ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spectral energetic properties of the X-ray-boosted photoionization by an intense few-cycle laser |
Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍) |
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract We report a discovery that an intense few-cycle laser pulse passing through gas leaves a fingerprint of its field envelope on the photoelectron energy spectrum, which involves continuous X-ray radiations. The spectrum resulting from the photoionization processes includes significant quantum enhancement and interference and exhibits interesting energetic properties. The spectral cut-off energies reflect the strength, time, and interference of the laser field modulation on the photoelectron energy. These energetic properties suggest a new method for precise intense-laser-pulse measurement in situ. The method has the advantages of accuracy, simplicity, speed, and large dynamic ranges (up to many orders of intensity).
|
Received: 22 October 2013
Revised: 22 December 2013
Accepted manuscript online:
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175010). |
Corresponding Authors:
Ge Yu-Cheng
E-mail: gyc@pku.edu.cn
|
About author: 42.65.Re; 42.50.Hz; 42.50.Ct; 42.60.Jf |
Cite this article:
Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍) Spectral energetic properties of the X-ray-boosted photoionization by an intense few-cycle laser 2014 Chin. Phys. B 23 074207
|
[1] |
Fuji T, Unterhuber A, Yakovlev V S, Tempea G, Stingl A, Krausz F and Drexler W 2003 Appl. Phys. B 77 125
|
[2] |
Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R and Leitenstorfer A 2010 Nat. Photon. 4 33
|
[3] |
Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G and Krushelnick K 2008 Opt. Eexpress 16 2109
|
[4] |
Wiehle R, Witzel B, Helm H and Cormier E 2003 Phys. Rev. A 67 063405
|
[5] |
Spielmann C and Burnett N H 1997 Science 278 661
|
[6] |
Schnuürer M, Spielmann C, Wobrauschek P, Streli C, Burnett N H, Kan C, Ferencz K, Koppitsch R, Cheng Z, Brabec T and Krausz F 1998 Phys. Rev. Lett. 80 3236
|
[7] |
Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Drescher M and Krausz F 2005 J. Mod. Opt. 52 261
|
[8] |
Bula C, McDonald K T, Prebys E J, Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W, Burke D L, Field R C, Horton-Smith G, Odian A C, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K and Weidemann A W 1996 Phys. Rev. Lett. 76 3116
|
[9] |
Mourou G and Tajima T 2011 Science 331 41
|
[10] |
Florian A, Konstantinos M, Alfred L, Harald S, Burghard L, Gesine G and Florian T 2004 Opt. Express 12 5872
|
[11] |
Ryu H Y, Moon H S and Suh H S 2007 Opt. Express 15 11396
|
[12] |
Ryu H Y, Lee S H, Lee W K, Moon H S and Suh H S 2008 Opt. Express 16 2867
|
[13] |
Diels J M, Fontaine J J, McMichael I C and Simoni F 1985 Appl. Opt. 24 1270
|
[14] |
Pablo G and Rick T 2008 JOSA B 25 A25
|
[15] |
Lane R G and Tallon M 1992 Appl. Opt. 31 6902
|
[16] |
Elster C and Weingartner I 1999 Appl. Opt. 38 5024
|
[17] |
Chanteloup J C 2005 Appl. Opt. 44 1559
|
[18] |
L'Huillier A, Lompre L A, Mainfray G and Manus C 1983 J. Phys. B 16 1363
|
[19] |
Link A, Chowdhury E A, Morrison J T, Ovchinnikov V M, Offermann D, Woerkom L V, Freeman R R, Pasley J, Shipton E, Beg F, Rambo P, Schwarz J, Geissel M, Edens A and Porter J L 2006 Rev. Sci. Instrum. 77 10E723
|
[20] |
Akahane Y, Ma J, Fukuda Y, Aoyoma M, Kiriyama H, Sheldakova J V, Kudryashov A V and Yamakawa K 2006 Rev. Sci. Instrum. 77 023102
|
[21] |
Alnaser A S, Tong X M, Osipov T, Voss S, Maharjan C M, Shan B, Chang Z and Cocke C L 2004 Phys. Rev. A 70 023413
|
[22] |
Smeenk C, Salvail J Z, Arissian L, Corkum P B, Hebeisen C T and Staudte A 2011 Opt. Express 19 9336
|
[23] |
Lewenstein P, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[24] |
Chang Z, Rundquist A, Wang H, Murnane M M and Kapteyn H C 1997 Phys. Rev. Lett. 79 2967
|
[25] |
Perry M D and Mourou G 1994 Science 264 917
|
[26] |
Mashiko H, Suda A and Midorikawa K 2004 Opt. Lett. 29 1927
|
[27] |
Tong X and Lin C 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2593
|
[28] |
Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
|
[29] |
Guo D S 2013 Phys. Rev. Lett. 110 063002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|