|
|
Multiple-plateau structure and scaling relation in photoelectron spectra of high-order above-threshold ionization |
Wu Yan (吴艳)a), Ye Hui-Liang (叶会亮)a), Zhang Jing-Tao(张敬涛)a)†, and Guo Dong-Sheng (郭东升)b) |
1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2. Southern University and A&M College, LA 70813, USA |
|
|
Abstract By developing a full quantum scattering theory of high-order above-threshold ionization, we study the energy spectra and the angular distributions of photoelectrons from atoms with intense laser fields shining on them. We find that real rescattering can occur many times, and even infinite times. The photoelectrons from the rescattering process form a broad plateau in the kinetic-energy spectrum. We further disclose a multiple-plateau structure formed by the high-energy photoelectrons, which absorb many photons during the rescattering process. Moreover, we find that both the angular distributions and the kinetic-energy spectra of photoelectrons obey the same scaling law as that for directly emitted photoelectrons.
|
Received: 27 October 2011
Revised: 27 April 2012
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
12.20.Ds
|
(Specific calculations)
|
|
03.65.Nk
|
(Scattering theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774513, 61078080, 11174304, and 11104167) and the National Basic Research Program of China (Grant Nos. 2010CB923203 and 2011CB808103). |
Cite this article:
Wu Yan (吴艳), Ye Hui-Liang (叶会亮), Zhang Jing-Tao(张敬涛), and Guo Dong-Sheng (郭东升) Multiple-plateau structure and scaling relation in photoelectron spectra of high-order above-threshold ionization 2012 Chin. Phys. B 21 053201
|
[1] |
Choi N N, Jiang T F, Morishita T, Lee M H and Lin C D 2010 Phys. Rev. A 82 013409
|
[2] |
Lin C D, Le A T, Chen Z, Morishita T and Lucchese R 2010 J. Phys. B: At. Mol. Opt. Phys. 43 122001
|
[3] |
Cornaggia C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 161002.
|
[4] |
Xu J, Chen Z, Le A T and Lin C D 2010 Phys. Rev. A 82 033403
|
[5] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[6] |
Yang B, Schafer K J, Walker B, Kulander K C, Agostini P and DiMauro L F 1993 Phys. Rev. Lett. 71 3770
|
[7] |
Morishita T, Le A T, Chen Z and Lin C D 2008 Phys. Rev. Lett. 100 013903
|
[8] |
Wickenhauser M, Tong X M, Arbo D G, Burgdorfer J and Lin C D 2006 Phys. Rev. A 74 041402(R)
|
[9] |
Paulus G G, Becker W, Nicklich W and Walther H 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L703
|
[10] |
Lewenstein M, Kulander K C, Schafer K J and Bucksbaum P H 1995 Phys. Rev. A 51 1495
|
[11] |
Xin G, Ye D, Zhao Q and Liu J 2011 Acta Phys. Sin. 60 093204
|
[12] |
Guo D S, Åberg T and Crasemann B 1989 Phys. Rev. A 40 4997
|
[13] |
Zhang J, Zhang W, Xu Z, Li X, Fu P, Guo D S and Freeman R R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4809
|
[14] |
Bai L, Zhang J, Xu Z and Guo D S 2006 Phys. Rev. Lett. 97 193002
|
[15] |
Zhang J, Woerkom L D, Guo D S and Freeman R R 2007 Phys. Rev. A 76 015401
|
[16] |
Bucksbaum P H, Schumacher D W andBashkansky M 1988 Phys. Rev. Lett. 61 1182
|
[17] |
Guo D S and Drake G W F 1992 Phys. Rev. A 45 6622
|
[18] |
Nandor M J, Walker M A and VanWoerkom L D 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4617
|
[19] |
Milošević D B and Ehlotzky F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1585
|
[20] |
Usachenko V I and Pazdzersky V A 2004 Phys. Rev. A 69 013406
|
[21] |
Wang B B, Gao L, Li X, Guo D S and Fu P 2007 Phys. Rev. A 75 063419
|
[22] |
Guo D S and Drake G W F 1992 J. Phys. A: Math. Gen. 25 3383
|
[23] |
Wang Y, Zhang J T, Ren X H and Xu Z Z 2009 Chin. Phys. B 18 4815
|
[24] |
Lippmann B and Schwinger J 1950 Phys. Rev. 79 469
|
[25] |
Gell-Mann M and Golberger M L 1953 Phys. Rev. 91 398
|
[26] |
Greiner W稲einhardt J 2003 Quantum Electrodynamics 3rd ed (Germany:Spinger) pp.1--20
|
[27] |
Chen Z J, Le A T, Morishita T and Lin C D 2009 J. Phys. B: At. Mol. Opt. Phys. 42 061001
|
[28] |
Hertlein M P, Bucksbaum P H and Muller H G 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L197
|
[29] |
Okunishi M, Morishita T, Prumper G, Shimada K, Lin C D, Watanabe S and Ueda K 2008 Phys. Rev. Lett. 100 143001
|
[30] |
Morishita T, Okunishi M, Shimada K, Pruper G, Chen Z, Watanabe S, Ueda K and Lin C D 2009 J. Phys. B: At. Mol. Opt. Phys. 42 105205
|
[31] |
Tate J, Auguste T, Muller H G, Salieres P, Agostini P and DiMauro L F 2007 Phys. Rev. Lett. 98 013901
|
[32] |
P閞ez-Hern醤dez J A, Ramos J, Roso L and Plaja L 2010 Laser Phys. 20 1044
|
[33] |
Guo D S, Zhang J, Xu Z, Li X, Fu P and Freeman R R 2003 Phys. Rev. A 68 043404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|