Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 063201    DOI: 10.1088/1674-1056/22/6/063201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

X-ray-boosted photoionization for the measurement of an intense laser pulse

Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍)
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
Abstract  Investigations show that the X-ray-boosted photoionization (XBP) has the following advantages for in-situ measurements of ultrahigh laser intensity I and field envelope F(t) (time t, pulse duration τL, carrier-envelope-phase φ): accuracy, dynamic ranges, and rapidness. The calculated XBP spectra resemble inversely proportional functions of the photoelectron momentum shift. The maximum momentum p and the observable value Q (defined as a double integration of a normalized photoelectron energy spectrum, PES) linearly depend on I1/2 and τL, respectively. φ and F(t) can be determined from the PES cut-off energy and peak positions. The measurable laser intensity can be up to and over 1018 W/cm2 by using high energy X-rays and highly charged inert gases.
Keywords:  measurement of ultrahigh laser pulse      X-ray-boosted photoionization      photoelectron energy spectrum      quantum interference  
Received:  14 October 2012      Revised:  21 January 2013      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175010).
Corresponding Authors:  Ge Yu-Cheng     E-mail:  gyc@pku.edu.cn

Cite this article: 

Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍) X-ray-boosted photoionization for the measurement of an intense laser pulse 2013 Chin. Phys. B 22 063201

[1] Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R and Leitenstorfer A 2010 Nat. Photon. 4 33
[2] Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G and Krushelnick K 2008 Opt. Express 16 2109
[3] Wiehle R, Witzel B and Helm H 2003 Phys. Rev. A 67 063405
[4] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
[5] Bula C, McDonald K T, Prebys E J; Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W; Burke D L, Field R C, Horton-Smith G, Odian A C, Spencer J E, Walz D; Berridge S C, Bugg W M, Shmakov K and Weidemann A W 1996 Phys. Rev. Lett. 76 3116
[6] Mourou G and Tajima T 2011 Science 331 41
[7] L'Huillier A, Lompre L A, Mainfray G and Manus C 1983 J. Phys. B 16 1363
[8] Link A, Chowdhury E A, Morrison J T, Ovchinnikov V M, Offermann D, Woerkom L V, Freeman R R, Pasley J, Shipton E, Beg F, Rambo P, Schwarz J, Geissel M, Edens A and Porter J L 2006 Rev. Sci. Instrum. 77 10E723
[9] Akahane Y, Ma J L, Fukuda Y, Aoyoma M, Kiriyama H, Sheldakova J V, Kudryashov A V and Yamakawa K 2006 Rev. Sci. Instrum. 77 023102
[10] Alnaser A S, Tong X M, Osipov T, Voss S, Maharjan C M, Shan B, Chang Z and Cocke C L 2004 Phy. Rev. A 70 023413
[11] Smeenk C, Salvail J Z, Arissian L, Corkum P B, Hebeisen C T and Staudte A 2011 Opt. Express 19 9336
[12] Scrinzi A, Geissler M and Brabec T 2001 Phy. Rev. Lett. 86 412
[13] Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F and Corkum P B 2002 Phy. Rev. Lett. 88 173903
[14] Bandrauk A D, Chelkowski S and Shon N H 2002 Phy. Rev. Lett. 89 283903
[15] Quéré F, Itatani J, Yudin G L and Corkum P B 2003 Phy. Rev. Lett. 90 073902
[16] Ge Y C 2006 Phys. Rev. A 74 015803
[17] Ge Y C 2008 Phys. Rev. A 77 033851
[18] Ge Y C and He H P 2011 Phys. Rev. A 84 023804
[19] Ge Y C 2008 Chin. Phys. B 17 2072
[20] Ge Y C 2008 Chin. Phys. B 17 4492
[21] Ge Y C 2009 Chin. Phys. B 18 1473
[22] Ge Y C and He H P 2010 Chin. Phys. B 19 103302
[23] Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B and Krausz F 2001 Science 291 1923
[24] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[25] Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U and Krausz F 2002 Nature 419 803
[26] Kienberger R, Goulielmakies E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
[27] Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Science 305 1267
[28] Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phy. Rev. A 49 2117
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!