|
|
X-ray-boosted photoionization for the measurement of an intense laser pulse |
Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍) |
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract Investigations show that the X-ray-boosted photoionization (XBP) has the following advantages for in-situ measurements of ultrahigh laser intensity I and field envelope F(t) (time t, pulse duration τL, carrier-envelope-phase φ): accuracy, dynamic ranges, and rapidness. The calculated XBP spectra resemble inversely proportional functions of the photoelectron momentum shift. The maximum momentum p and the observable value Q (defined as a double integration of a normalized photoelectron energy spectrum, PES) linearly depend on I1/2 and τL, respectively. φ and F(t) can be determined from the PES cut-off energy and peak positions. The measurable laser intensity can be up to and over 1018 W/cm2 by using high energy X-rays and highly charged inert gases.
|
Received: 14 October 2012
Revised: 21 January 2013
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175010). |
Corresponding Authors:
Ge Yu-Cheng
E-mail: gyc@pku.edu.cn
|
Cite this article:
Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍) X-ray-boosted photoionization for the measurement of an intense laser pulse 2013 Chin. Phys. B 22 063201
|
[1] |
Krauss G, Lohss S, Hanke T, Sell A, Eggert S, Huber R and Leitenstorfer A 2010 Nat. Photon. 4 33
|
[2] |
Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G and Krushelnick K 2008 Opt. Express 16 2109
|
[3] |
Wiehle R, Witzel B and Helm H 2003 Phys. Rev. A 67 063405
|
[4] |
Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[5] |
Bula C, McDonald K T, Prebys E J; Bamber C, Boege S, Kotseroglou T, Melissinos A C, Meyerhofer D D, Ragg W; Burke D L, Field R C, Horton-Smith G, Odian A C, Spencer J E, Walz D; Berridge S C, Bugg W M, Shmakov K and Weidemann A W 1996 Phys. Rev. Lett. 76 3116
|
[6] |
Mourou G and Tajima T 2011 Science 331 41
|
[7] |
L'Huillier A, Lompre L A, Mainfray G and Manus C 1983 J. Phys. B 16 1363
|
[8] |
Link A, Chowdhury E A, Morrison J T, Ovchinnikov V M, Offermann D, Woerkom L V, Freeman R R, Pasley J, Shipton E, Beg F, Rambo P, Schwarz J, Geissel M, Edens A and Porter J L 2006 Rev. Sci. Instrum. 77 10E723
|
[9] |
Akahane Y, Ma J L, Fukuda Y, Aoyoma M, Kiriyama H, Sheldakova J V, Kudryashov A V and Yamakawa K 2006 Rev. Sci. Instrum. 77 023102
|
[10] |
Alnaser A S, Tong X M, Osipov T, Voss S, Maharjan C M, Shan B, Chang Z and Cocke C L 2004 Phy. Rev. A 70 023413
|
[11] |
Smeenk C, Salvail J Z, Arissian L, Corkum P B, Hebeisen C T and Staudte A 2011 Opt. Express 19 9336
|
[12] |
Scrinzi A, Geissler M and Brabec T 2001 Phy. Rev. Lett. 86 412
|
[13] |
Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F and Corkum P B 2002 Phy. Rev. Lett. 88 173903
|
[14] |
Bandrauk A D, Chelkowski S and Shon N H 2002 Phy. Rev. Lett. 89 283903
|
[15] |
Quéré F, Itatani J, Yudin G L and Corkum P B 2003 Phy. Rev. Lett. 90 073902
|
[16] |
Ge Y C 2006 Phys. Rev. A 74 015803
|
[17] |
Ge Y C 2008 Phys. Rev. A 77 033851
|
[18] |
Ge Y C and He H P 2011 Phys. Rev. A 84 023804
|
[19] |
Ge Y C 2008 Chin. Phys. B 17 2072
|
[20] |
Ge Y C 2008 Chin. Phys. B 17 4492
|
[21] |
Ge Y C 2009 Chin. Phys. B 18 1473
|
[22] |
Ge Y C and He H P 2010 Chin. Phys. B 19 103302
|
[23] |
Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B and Krausz F 2001 Science 291 1923
|
[24] |
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P B, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
|
[25] |
Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U and Krausz F 2002 Nature 419 803
|
[26] |
Kienberger R, Goulielmakies E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
|
[27] |
Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Science 305 1267
|
[28] |
Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phy. Rev. A 49 2117
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|