Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068202    DOI: 10.1088/1674-1056/abf558
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives

Fangrong Hu(胡放荣)1, Mingyang Zhang(张铭扬)1,2, Wenbin Qi(起文斌)2,3, Jieyun Zheng(郑杰允)2, Yue Sun(孙悦)2, Jianyu Kang(康剑宇)2, Hailong Yu(俞海龙)2, Qiyu Wang(王其钰)2, Shijuan Chen(陈世娟)5, Xinhua Sun(孙新华)5,6, Baogang Quan(全保刚)2,3,4,†, Junjie Li(李俊杰)2,‡, Changzhi Gu(顾长志)2, and Hong Li(李泓)2,§
1 Guangxi Key Laboratory of Automatic Detecting Technology and Instrument, Guilin University of Electronic Technology, Guilin 541004, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 10049, China;
4 Songshan Lake Materials Laboratory, Dongguan, China;
5 Tianjin Jinniu Power Sources Material Co., Ltd, Tianjin 300400, China;
6 Cenertech Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin 300131, China
Abstract  The <100> crystal-oriented silicon micropillar array platforms were prepared by microfabrication processes for the purpose of electrolyte additive identification. The silicon micropillar array platform was used for the study of fluorinated vinyl carbonate (FEC), vinyl ethylene carbonate (VEC), ethylene sulfite (ES), and vinyl carbonate (VC) electrolyte additives in the LiPF6 dissolved in a mixture of ethylene carbonate and diethyl carbonate electrolyte system using charge/discharge cycles, electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy, and x-ray photoelectron spectroscopy. The results show that the silicon pillar morphology displays cross-shaped expansion after lithiation/delithiation, the inorganic lithium salt keeps the silicon pillar morphology intact, and the organic lithium salt content promotes a rougher silicon pillar surface. The presence of poly-(VC) components on the surface of FEC and VC electrodes allows the silicon pillar to accommodate greater volume expansion while remaining intact. This work provides a standard, fast, and effective test method for the performance analysis of electrolyte additives and provides guidance for the development of new electrolyte additives.
Keywords:  lithium-ion batteries      solid electrolyte interphases      electrolyte additives      silicon micropillar electrodes  
Received:  28 February 2021      Revised:  02 April 2021      Accepted manuscript online:  07 April 2021
PACS:  82.45.Yz (Nanostructured materials in electrochemistry)  
  82.45.Fk (Electrodes)  
  82.47.Aa (Lithium-ion batteries)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0100500 and 2016YFB0100100) and the National Natural Science Foundation of China (Grant Nos. 11674387, 11574385, 22005332, 115674368, and 62065005).
Corresponding Authors:  Baogang Quan, Junjie Li, Hong Li     E-mail:  quanbaogang@aphy.iphy.ac.cn;lijunjie@iphy.ac.cn;lihong@iphy.ac.cn

Cite this article: 

Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓) Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives 2021 Chin. Phys. B 30 068202

[1] Armand M and Tarascon J M 2008 Nature 451 652
[2] Han B, Yang Y, Shi X B, Zhang G Z, Gong L, Xu D W, Zeng H B, Wang C Y, Gu M and Deng Y H 2018 Nano Energy 50 359
[3] Yuan C Z, Wu H B, Xie Y and Lou X W 2014 Angew. Chem.-Int. Ed. 53 1488
[4] Qin X Y, Yan B Y, Yu J, Jin J, Tao Y, Mu C, Wang S C, Xue H G and Pang H 2017 Inorg. Chem. Front. 4 1424
[5] Zuo X X, Wang X Y, Xia Y G, Yin S S, Ji Q, Yang Z H, Wang M M, Zheng X F, Qiu B, Liu Z P, Zhu J, Muller-Buschbaum P and Cheng Y J 2019 J. Power Sources. 412 93
[6] Bates J B, Dudney N J, Neudecker B, Ueda A and Evans C D 2000 Solid State Ion. 135 33
[7] Mills E, Cannarella J, Zhang Q, Bhadra S, Arnold C B and Chou S Y 2014 J. Vac. Sci. Technol. B 32 06FG10
[8] Choi J H, Kim H K, Jin E M, Seo M W, Cho J S, Kumar R V and Jeong S M 2020 J. Hazard. Mater. 399 122949
[9] Wang J, Wang X, Liu B, Lu H, Chu G, Liu J, Guo Y G, Yu X, Luo F, Ren Y, Chen L and Li H 2020 Nano Energy 78 105101
[10] Im J, Jang E K, Kim S, Yoon S, Kim D H and Cho K Y 2020 Chem. Eng. J. 402 126292
[11] Feng X, Yang J, Bie Y, Wang J, Nuli Y and Lu W 2014 Nanoscale 6 12532
[12] Kim I S and Kumta P N 2004 J. Power Sources. 136 145
[13] Majeed M K, Saleem A, Ma X J and Ma W Z 2020 J. Alloys Compd. 848 156590
[14] Fan Z Q, Zheng S S, He S, Ye Y Y, Liang J H, Shi A D, Wang Z L and Zheng Z F 2020 Diamond Relat. Mater. 107 107898
[15] Wang C, Luo F, Lu H, Liu B A, Chu G, Quan B G, Li J J, Gu C Z, Li H and Chen L Q 2017 Nanoscale 9 17241
[16] Schnabel M, Harvey S P, Arca E, Stetson C, Teeter G, Ban C M and Stradins P 2020 ACS Appl. Mater. Interfaces 12 27017
[17] Keles O, Karahan B D, Eryilmaz L, Amine R, Abouimrane A, Chen Z H, Zuo X B, Zhu Z H, Al-Hallaj S and Amine K 2020 Nano Energy 76 105094
[18] Hasa I, Haregewoin A M, Zhang L, Tsai W Y, Guo J H, Veith G M, Ross P N and Kostecki R 2020 ACS Appl. Mater. Interfaces 12 40879
[19] Zou F and Manthiram A 2020 Adv. Energy Mater. 10 2002508
[20] Zhang Q Y, Zhang C F, Luo W W, Cui L F, Wang Y J, Jian T Y, Li X L, Yan Q Z, Liu H D, Ouyang C Y, Chen Y L, Chen C L and Zhang J J 2020 Adv. Sci. 7 2000749
[21] Li Z H, Zhang Y P, Liu T F, Gao X H, Li S Y, Ling M, Liang C D, Zheng J C and Lin Z 2020 Adv. Energy Mater. 10 1903110
[22] Michan A L, Parimalam B S, Leskes M, Kerber R N, Yoon T, Grey C P and Lucht B L 2016 Chem. Mater. 28 8149
[23] Haruta M, Hioki R, Moriyasu T, Tomita A, Takenaka T, Doi T and Inaba M 2018 Electrochim. Acta 267 94
[24] Chen L, Wang K, Xie X and Xie J 2007 J. Power Sources. 174 538
[25] Zheng X, Fang G, Pan Y, Li Q and Wu M 2019 J. Power Sources. 439 227081
[26] Jin Y, Kneusels N H, Marbella L E, Castillo-Martinez E, Magusin P, Weatherup R S, Jonsson E, Liu T, Paul S and Grey C P 2018 J. Am. Chem. Soc. 140 9854
[27] Schwenke K U, Solchenbach S, Demeaux J, Lucht B L and Gasteiger H A 2019 J. Electrochem. Soc. 166 A2035
[28] Madec L, Petibon R, Tasaki K, Xia J, Sun J P, Hill I G and Dahn J R 2015 Phys. Chem. Chem. Phys. 17 27062
[29] Xia J, Aiken C P, Ma L, Kim G Y, Burns J C, Chen L P and Dahn J R 2014 J. Electrochem. Soc. 161 A1149
[30] Xiang H, Chen J and Wang H 2011 Ionics 17 415
[31] Pan Y C, Saikia D, Fang J, Tsai L D, Fey G T K and Kao H M 2014 Rsc. Advances 4 13293
[32] Yi R, Dai F, Gordin M L, Sohn H and Wang D H 2013 Adv. Energy Mater. 3 1507
[33] Xu K 2014 Chem. Rev. 114 11503
[34] Tao H C, Zhu S C, Xiong L Y, Zhang L L and Yang X L 2017 Chemistryselect 2 2832
[35] Ratynski M, Hamankiewiecz B, Krajewski M, Boczar M, Buchberger D A and Czerwinski A 2019 Electrocatalysis 11 160
[36] He H W, Xiong R, Zhang X W, Sun F C and Fan J X 2011 IEEE Trans. Veh. Technol. 60 1461
[37] Liu X H, Wang J W, Huang S, Fan F F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh S A, Davydov A V, Mao S X, Picraux S T, Zhang S L, Li J, Zhu T and Huang J Y 2012 Nat. Nanotechnol. 7 749
[38] Luo F, Chu G, Xia X X, Liu B N, Zheng J Y, Li J J, Li H, Gu C Z and Chen L Q 2015 Nanoscale 7 7651
[39] Zhang Q and White R E 2008 J. Power Sources. 179 793
[40] Huang W, Attia P M, Wang H S, Renfrew S E, Jin N, Das S, Zhang Z W, Boyle D T, Li Y Z, Bazant M Z, McCloskey B D, Chueh W C and Cui Y 2019 Nano Lett. 19 5140
[41] Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J and Pei N 2000 Solid State Ion. 135 181
[42] Bruce P G, Scrosati B and Tarascon J M 2008 Angew. Chem.-Int. Ed. 47 2930
[43] Ai Q, Li D P, Guo J G, Hou G M, Sun Q, Sun Q D, Xu X Y, Zhai W, Zhang L, Feng J K, Si P C, Lou J and Ci L J 2019 Adv. Mater. Interfaces 6 1901187
[44] Nguyen C C and Lucht B L 2014 J. Electrochem. Soc. 161 A1933
[45] Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M and Heider U 2002 Electrochim. Acta 47 1423
[46] Aupperle F, Eshetu G G, Eberman K W, Xioa A, Bridel J S and Figgemeier E 2020 J. Mater. Chem. A 8 19573
[47] Wu R, Liu X Q, Zheng Y J, Li Y H, Shi H F, Cheng X P, Pfleging W and Zhang Y F 2020 J. Power Sources. 473 228481
[48] Kennedy T, Brandon M, Laffir F and Ryan K M 2017 J. Power Sources. 359 601
[49] El Ouatani L, Dedryvere R, Siret C, Biensan P, Reynaud S, Iratcabal P and Gonbeau D 2009 J. Electrochem. Soc. 156 A103
[50] Etacheri V, Haik O, Goffer Y, Roberts G A, Stefan I C, Fasching R and Aurbach D 2012 Langmuir 28 965
[51] Ota H, Sato T, Suzuki H and Usami T 2001 J. Power Sources. 97-98 107
[1] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[2] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[3] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[4] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
[5] Improved electrochemical performances of high voltage LiCoO2 with tungsten doping
Jie-Nan Zhang(张杰男), Qing-Hao Li(李庆浩), Quan Li(李泉), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088202.
[6] Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries
Yu-Xin Tong(仝毓昕), Qing-Hua Zhang(张庆华), Lin Gu(谷林). Chin. Phys. B, 2018, 27(6): 066107.
[7] Modeling of LiFePO4 battery open circuit voltage hysteresis based on recursive discrete Preisach model
Wei-Yi Sun(孙维毅), Hai-Tao Min(闵海涛), Dong-Ni Guo(郭冬妮), Yuan-Bin Yu(于远彬). Chin. Phys. B, 2017, 26(12): 127503.
[8] Mechanics of high-capacity electrodes in lithium-ion batteries
Ting Zhu. Chin. Phys. B, 2016, 25(1): 014601.
[9] FT-Raman spectroscopy study of solvent-in-salt electrolytes
Liumin Suo(索鎏敏), Zheng Fang(方铮), Yong-Sheng Hu(胡勇胜), Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 016101.
[10] Lithium-ion transport in inorganic solid state electrolyte
Jian Gao(高健), Yu-Sheng Zhao(赵予生), Si-Qi Shi(施思齐), Hong Li(李泓). Chin. Phys. B, 2016, 25(1): 018211.
[11] High power nano-LiMn2O4 cathode materials with high-rate pulse discharge capability for lithium-ion batteries
Chen Ying-Chao(陈颖超),Xie Kai(谢凯),Pan Yi(盘毅), Zheng Chun-Man(郑春满),and Wang Hua-Lin(王华林) . Chin. Phys. B, 2011, 20(2): 028201.
No Suggested Reading articles found!