1 College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China; 2 Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
Abstract The translucent GGAG:Ce/glass composites are prepared successfully by ball-milling, tableting, and pressureless sintering. The thickness of composites is about 400 μm. The x-ray diffraction (XRD), differential scanning calorimetry (DSC), density of composite materials are measured and discussed systematically. The scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) elemental mapping are employed to analyze the particle size, the shape of powders, and the distribution of GGAG:Ce particles in the glass matrix, respectively. The decay time, ultraviolet, (UV), x-ray excitation luminescence spectra, and temperature spectra are studied. The results show that the composite materials have high light output, good thermostability, and short decay time. The method adopted in this work is an effective method to reduce the preparation time and cost of the sample. The ultralow afterglow indicates that the composite materials have an opportunity to be used for x-ray detection and imaging.
Fund: Project support by the National Natural Science Foundation of China (Grant Nos. 11975220, 51972291, 11575170, and 11605194).
Corresponding Authors:
Qin-Hua Wei, Hong-Sheng Shi
E-mail: weiqinhua1985@163.com;shs1975@126.com
Cite this article:
Wei-Jie Zhang(张伟杰), Qin-Hua Wei(魏钦华), Xiao Shen(沈潇), Gao Tang(唐高), Zhen-Hua Chen(陈振华), Lai-Shun Qin(秦来顺), and Hong-Sheng Shi(史宏声) Preparation and properties of GAGG:Ce/glass composite scintillation material 2021 Chin. Phys. B 30 074205
[1] Nikl M and Yoshikawa A 2015 Adv. Opt. Mater.3 463 [2] Fasoli M, Vedda A, Nikl M, Jiang C, Uberuaga B P, Andersson D A, Mcclellan K J, and Stanek C R 2011 Phys. Rev. B84 081102 [3] Burger A, Rowe E, Groza M, Figueroa K M, Cherepy N J, Beck P R, Hunter S and Payne S A 2015 Appl. Phys. Lett.107 143505 [4] Wu Y, Koschan M, Foster C and Melcher C L 2019 Cryst. Growth Des.19 4081 [5] Foster C, Wu Y, Stand L, Koschan M and Melcher C L 2019 J. Lumin.216 116751 [6] Wei Q, Shi H, Zhou Z, Liu G, Chen Z, Qin L and Liu Q 2017 J. Mater. Chem. C5 1443 [7] Wu Y, Peng J, Rutstrom D, Koschan M, Foster C and Melcher C L 2019 ACS Appl. Mater. Interfaces11 8194 [8] Kamada K, Yanagida T, Endo T, Tsutumi K, Usuki Y, Nikl M, Fujimoto Y, Fukabori A and Yoshikawa A 2012 J. Cryst. Growth352 88 [9] Sibczynski P, Iwanowska-Hanke J, Moszyński M, Swiderski L, Szawlowski M, Grodzicka M, Szczȩśniak T, Kamada K and Yoshikawa A 2015 Nucl. Instrum. Methods Phys. Res., Sect. A772 112 [10] Kanai T, Satoh M, and Miura I 2013 Int. J. Appl. Ceram. Technol. 10 E1 [11] Drozdowski W, Witkowski M E, Solarz P, Gluchowski P, Glowacki M and Brylew K 2018 Opt. Mater.79 227 [12] Blasse G 1994 Chem. Mater.6 1465 [13] Greskovich C D, Cusano D, Hoffman D and Riedner R J 1992 Am. Ceram. Soc. Bull.71 1120 [14] Yanagida T, Kamada K, Fujimoto Y, Yagi H and Yanagitani T 2013 Adv. Opt. Mater.35 2480 [15] Luo Z, Jiang H, Jiang J and Mao R 2015 Ceram. Int.41 873 [16] Chen J, Shi Y, Feng T and Shi J 2004 J. Chin. Ceram. Soc.32 868 (in Chinese) [17] Philip O, Gunow G, Shestakova I, Berheide M, Durner E, Stoller C and Cherepy N 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 31 October-7 November 2015, San Diego, CA, USA, p. 1 [18] Chen X, Qin H, Wang X, Yang C, Jiang J and Jiang H 2016 J. Eur. Ceram. Soc.36 2587 [19] Wei Q, Zhuang J, Liu G, Zhou Z, Yang H, Wang J and Liu Q 2014 RSC Adv.4 33819 [20] Feller R K, Purdy G M, Ortiz-Acosta D, Stange S, Li A, McKigney E A, Esch E I, Muenchausen R E, Gilbertson R and Bacrania M J 2011 J. Mater. Chem.21 5716 [21] Lawrence W G, Thacker S, Palamakumbura S, Riley K J and Nagarkar V V 2012 IEEE Trans. Nucl. Sci.59 215 [22] Sen S, Tyagi M, Sharma K, Sarkar P S, Sarkar S, Basak C B, Pitale S, Ghosh M and Gadkari S C 2017 ACS Appl. Mater. Interfaces9 37310 [23] Letant S E and Wang T F 2006 Nano Lett.6 2877 [24] El-Amir A A, Ohsawa T, Nabatame T, Ohi A, Wada Y, Nakamura M, Fu X, Shimamura K and Ohashi N 2019 Mater. Sci. Semicond. Process.91 222 [25] Ye Y 2017 Fabrication and Properties of Ce:GGAG Scintillator Ceramics, Master Dissertation (Xuzhou: Jiangsu Normal University) (in Chinese) [26] van Eijk C W E 2003 Nucl. Instrum. Methods Phys. Res., Sect. A509 17 [27] Yoshida M, Nakagawa M, Fujii H, Kawaguchi F, Yamada H, Ito Y, Takeuchi H Hayakawa T and Tsukuda Y 1988 Jpn. J. Appl. Phys.27 L1572 [28] Wei Q, Liu Y, Miao Y T, Li Y, Shi H and Qin L 2018 J. Lumin.194 610 [29] Bhushan S and Chukichev M V 1988 J. Mater. Sci.7 319 [30] Liu P, Liu Y, Wang L, Qiao J, Huang P, Shi Q, Tian Y, Jiang H and Jiang J 2018 J. Alloys Compd.731 389
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.