Abstract The effects of Sm doping into CuInTe2 chalcopyrite on the cohesive energy before and after light absorption are systematically investigated by the empirical electron theory (EET) of solids and molecules. The results show that the static energy of CuIn1-xSmxTe2 decreases with Sm content increasing due to the valence electronic structure modulated by doping Sm into CuIn1-xSmxTe2. The calculated optical absorption transition energy from the static state to the excited energy level in CuIn1-xSmxTe2 accords well with the experimental absorption bandgap of CuIn1-xSmxTe2. Moreover, it is found that the energy bandgap of CuIn1-xSmxTe2 is significantly widened with Sm content increasing due to its special valent electron structure, which is favorable for enhancing the light absorption in a wider range and also for the potential applications in solar cells.
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪) Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption 2021 Chin. Phys. B 30 043101
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.