1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; 2 National Engineering Research Center for Optical Instruments, Center for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
Abstract By introducing an optic-null medium into the finite embedded transformation, a reflectionless spatial beam bender is designed, which can steer the output beam by a fixed pre-designed angle β for an arbitrary incident angle. The bending angle β of the beam bender is determined by the geometrical angle of the device, which can be changed by simply choosing different geometrical angles. For various bending angles, the designed spatial beam bender can be realized by the same materials (i.e., an optic-null medium), which is a homogenous anisotropic material. Numerical simulations verify the reflectionless bending effect and rotated imaging ability of the proposed beam bender. A reduction model of the optic-null medium is studied, which can also be used for a reflectionless spatial beam bender with a pre-designed bending angle.
(Edge and boundary effects; reflection and refraction)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971300, 11604292, 61905208, 11674239, and 11621101), the Scientific and Technological Innovation Programs (STIP) of Higher Education Institutions in Shanxi Province, China (Grant Nos. 2019L0159 and 2019L0146), and the Postdoctoral Science Foundation of China (Grant Nos. 2017T100430 and 2018M632455).
Multi-window invisible cloaks Wang Xin-Hua(王新华), Qu Shao-Bo(屈绍波), Xia Song(夏颂), Wang Bin-Ke(王斌科), Xu Zhuo(徐卓), Ma Hua(马华),Wang Jia-Fu(王甲富),Gu Chao(顾超), Wu Xiang(吴翔),Lu Lei(鲁磊), and Zhou Hang(周航). Chin. Phys. B, 2010, 19(6): 064101.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.