Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 113202    DOI: 10.1088/1674-1056/abb3de
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Nonadiabatic molecular dynamics simulation of ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$ in a strong laser field

Ji-Gen Chen(陈基根)1, Gang-Tai Zhang(张刚台)2, Ting-Ting Bai(白婷婷)3, Jun Wang(王俊)4, †, Ping-Ping Chen(陈平平)5,, ‡, Wei-Wei Yu(于伟威)6,§, and Xi Zhao(赵曦)7,8,9,
1 Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Taizhou 225300, China
2 College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
3 College of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China
4 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
5 Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, USA
6 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
7 School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
8 School of Physics and Electronics, Qiannan Normal College For Nationalities, Guizhou Province, Duyun 558000, China
9 Department of Physics, Kansas State University, Manhattan, KS 66506, USA
Abstract  

We investigate the alignment dependence of the strong laser dissociation dynamics of molecule ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$ in the frame of real-time and real-space time-dependent density function theory coupled with nonadiabatic quantum molecular dynamics (TDDFT-MD) simulation. This work is based on a recent experiment study “ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene” [Wolter et al, Science 354, 308–312 (2016)]. Our simulations are in excellent agreement with the experimental data and the analysis confirms that the alignment dependence of the proton dissociation dynamics comes from the electron response of the driving laser pulse. Our results validate the ability of the TDDFT-MD method to reveal the underlying mechanism of experimentally observed and control molecular dissociation dynamics.

Keywords:  strong field physics      molecular dynamics      TDDFT      attosecond science      ultra fast optics  
Received:  19 February 2020      Revised:  19 August 2020      Accepted manuscript online:  01 September 2020
Fund: Xi Zhao was supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Grant No. DE-FG02-86ER13491), the National Natural Science Foundation of China (Grant No. 11904192); Ji-Gen Chen was supported by the National Natural Science Foundation of China (Grant No. 11975012); Gang-Tai Zhang was supported by the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2016JM1012), the Natural Science Foundation of the Educational Department of Shaanxi Province, China (Grant No. 18JK0050), the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK16069); Jun Wang was supported by the National Natural Science Foundation of China (Grant Nos. 11604119 and 11627807); and Wei-Wei Yu was supported by the National Natural Science Foundation of China (Grant No. 11604131).
Corresponding Authors:  Corresponding author. E-mail: wangjun86@jlu.edu.cn Corresponding author. E-mail: pingpingchen@ksu.edu §Corresponding author. E-mail: weiweiyu2012@163.com Corresponding author. E-mail: zhaoxi719@ksu.com   

Cite this article: 

Ji-Gen Chen(陈基根), Gang-Tai Zhang(张刚台), Ting-Ting Bai(白婷婷), Jun Wang(王俊), Ping-Ping Chen(陈平平), Wei-Wei Yu(于伟威)§, and Xi Zhao(赵曦)¶ Nonadiabatic molecular dynamics simulation of ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$ in a strong laser field 2020 Chin. Phys. B 29 113202

Fig. 1.  

The calculated relevant energy levels and two possible ionization–dissociation pathways. The lowest line is the ground state of neutral ground state ${}^{1}{\Sigma }_{{\rm{g}}}^{+}$. The two green lines are the ground and excited states 2Πu, ${}^{2}{\Sigma }_{{\rm{g}}}^{+}$ of ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{1+}$. The upper six lines are the states of ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$.

Fig. 2.  

Schematic geometry and initial electron density distribution of the ${{\rm{C}}}_{2}{{\rm{H}}}_{2}^{2+}$ molecule.

Fig. 3.  

The temporal profile of the electric field.

Fig. 4.  

Time evolution of chemical band C–H, C–C in (a) parallel and (b) perpendicular orientations.

Fig. 5.  

Force analysis of H1 [(a) and (b)] and H2 [(c) and (d)] with parallel [(a) and (c)] and perpendicular orientations [(b) and (d)]. The red line, green dash dot–dot line, blue dash–dot–dash line, and black dash line are the total force, electron force, laser force, and ion force, respectively.

Fig. 6.  

(a) Time evolution of RCH1 with parallel (blue dash line), perpendicular (red solid line), and the laser-free case (black dash line). (b) The ratio of the ionization yield between parallel and perpendicular orientations.

Fig. 7.  

Slice of the electron density distribution at t = 5.8 fs for (a) perpendicular and (b) parallel orientations.

Fig. 8.  

Time evolution of N–N band length with parallel (red line) and perpendicular (blue dash line) orientations. The laser parameters are the same as those in Fig. 5.

[1]
Wolter B Pullen M G Le A T Baudisch M Doblhoff-Dier K Senftleben A Hemmer M Schröter C D Ullrich J Pfeifer T Moshammer R Gräfe S Vendrell O Lin C D Biegert J 2016 Science 345 308
[2]
Ackermann W et al. 2007 Nat. Photon. 1 336 DOI: 10.1038/nphoton.2007.76
[3]
Lopez C Trimeche A Comparat D Picard Y J 2019 Phys. Rev. Appl. 11 064049 DOI: 10.1103/PhysRevApplied.11.064049
[4]
Hentschel M Kienberger R Spielmann C Reider G A Milosevic N Brabec T Corkum P Heinzmann U Drescher M Krausz F 2001 Nature 414 509 DOI: 10.1038/35107000
[5]
Zhao Y T Xu X Q Jiang S C Zhao X Chen J G Yang Y J 2020 Phys. Rev. A 101 033413 DOI: 10.1103/PhysRevA.101.033413
[6]
Zhao Y T Jiang S C Zhao X Chen J G Yang Y J 2020 Opt. Lett. 45 2874 DOI: 10.1364/OL.389787
[7]
Paul P M Toma E S Breger P Mullot G Augé F Balcou P Muller H G Agostini P 2001 Science 292 1689 DOI: 10.1126/science.1059413
[8]
Martin J M Bade S Dubosclard W Khan M A Kim S Garraway B M Alzar C L G 2019 Phys. Rev. Appl. 12 014033 DOI: 10.1103/PhysRevApplied.12.014033
[9]
Hentschel M Kienberger R Spielmann C Reider G A Milosevic N Brabec T Corkum P Heinzmann U Drescher M Krausz F 2001 Nature 414 509 DOI: 10.1038/35107000
[10]
Guan J Behrendt V Shen P Hofsass S Muthu-Arachchige T Grzesiak J Stienkemeier F Dulitz K 2019 Phys. Rev. Appl. 11 054073 DOI: 10.1103/PhysRevApplied.11.054073
[11]
Drescher M Hentschel M Kienberger R Uiberacker M Yakovlev V Scrinzi A Westerwalbesloh T Kleineberg U Heinzmann U Krausz F 2002 Nature 419 803 DOI: 10.1038/nature01143
[12]
Schiffrin A Paasch-Colberg T Karpowicz N Apalkov V Gerster D Muhlbrandt S Korbman M Reichert J Schultze M Holzner S Barth J V Kienberger R Ernstorfer R Yakovlev V S Stockman M I Krausz F 2013 Nature 493 70 DOI: 10.1038/nature11567
[13]
Zhao Y Ma S Jiang S Yang Y Zhao X Chen J 2019 Opt. Express 27 34392 DOI: 10.1364/OE.27.034392
[14]
Zhao X Wei H Wu Y Lin C D 2017 Phys. Rev. A 95 043407 DOI: 10.1103/PhysRevA.95.043407
[15]
Zhao X Wei H Yu W W Wang S J Lin C D 2020 Phys. Rev. Appl. 13 034043 DOI: 10.1103/PhysRevApplied.13.034043
[16]
Griesser H P Perrella C Light P S Luiten A N 2019 Phys. Rev. Appl. 11 054026 DOI: 10.1103/PhysRevApplied.11.054026
[17]
Luo Y Zhang P 2019 Phys. Rev. Appl. 12 044056 DOI: 10.1103/PhysRevApplied.12.044056
[18]
Haruyama J Hu C Watanabe K 2012 Phys. Rev. A 85 062511 DOI: 10.1103/PhysRevA.85.062511
[19]
Russakoff A Varga K 2015 Phys. Rev. A 92 053413 DOI: 10.1103/PhysRevA.92.053413
[20]
Telnov D A Chu S I 2009 Phys. Rev. A 80 043412 DOI: 10.1103/PhysRevA.80.043412
[21]
Le Breton G Rubio A Tancogne-Dejean N 2018 Phys. Rev. B 98 165308 DOI: 10.1103/PhysRevB.98.165308
[22]
Tully J C Preston R K 1971 J. Chem. Phys. 55 562 DOI: 10.1063/1.1675788
[23]
Meyer H D Manthe U Cederbaum L S 1990 Chem. Phys. Lett. 165 73 DOI: 10.1016/0009-2614(90)87014-I
[24]
Xue S Du H Hu B Lin C D Le A T 2018 Phys. Rev. A 97 043409 DOI: 10.1103/PhysRevA.97.043409
[25]
Andrade X Alberdi-Rodriguez J Strubbe D A Oliveira M J T Nogueira F Castro A Muguerza J Arruabarrena A Louie S G Aspuru-Guzik A 2012 J. Phys.: Condens. Matter 24 233202 DOI: 10.1088/0953-8984/24/23/233202
[26]
Casto A Appel H Oliveira M Rozzi C A Andrade X Lorenzen F Marques M A L Gross E K U Rubio A 2006 Phys. Status Solidi B 243 2465 DOI: 10.1002/(ISSN)1521-3951
[27]
Marques M A L Castro A Bertsha G F Rubio A 2003 Comput. Phys. Commun. 151 60 DOI: 10.1016/S0010-4655(02)00686-0
[28]
Troullier N Martins J L 1991 Phys. Rev. B 43 1993 DOI: 10.1103/PhysRevB.43.1993
[29]
Perdew J P Zunger A 1981 Phys. Rev. B 23 5048 DOI: 10.1103/PhysRevB.23.5048
[30]
Doblhoff-Dier K Kitzler M Gräfe S 2016 Phys. Rev. A 94 013405 DOI: 10.1103/PhysRevA.94.013405
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[9] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[10] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[11] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[12] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
No Suggested Reading articles found!