Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 113201    DOI: 10.1088/1674-1056/abb22e
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ionization of two-electron atom (xenon) studied by Bohmian mechanics theory

Yang Song(宋阳)1,3 , Shu Han(韩姝)2 , Yu-Jun Yang(杨玉军)3, Fu-Ming Guo(郭福明)3, †, and Su-Yu Li(李苏宇)3,, ‡
1 College of Science, Northeast Electric Power University, Jilin 132012, China
2 Archives, Northeast Electric Power University, Jilin 132012, China
3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  

The ionization dynamics of two-electron atom in an intense laser field is studied by the Bohmian mechanics (BM) theory, and the xenon atomic potential function is used as a model. The single ionization process and double ionization process are calculated by the BM theory and their results are in good agreement with those calculated by numerically solving the time-dependent Schrödinger equation. The analyses of the types, trajectories, and forces of Bohmian particles (BPs) undergoing the single and double ionizations indicate that the re-collision process accounts for a considerable proportion in the singly ionized cases. Furthermore, the analysis of the work done by the external force acting on the BPs shows that the quantum force plays an important role in the re-collision process. This work is helpful in understanding the ionization of two-electron atom in an intense laser field.

Keywords:  Bohmian mechanics      quantum force      atomic ionization      re-collision process  
Received:  24 April 2020      Revised:  09 August 2020      Accepted manuscript online:  25 August 2020
Fund: the Jilin Provincial Science and Technology Development Plan Program for Excellent Youth Talents, China (Grant No. 20180520174JH) and the National Natural Science Foundation of China (Grant Nos. 11704145, 11904050, 11774129, 11747007, 11534004, and 12074145).
Corresponding Authors:  Corresponding author. E-mail: guofm@jlu.edu.cn Corresponding author. E-mail: sylee@jlu.edu.cn   

Cite this article: 

Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), and Su-Yu Li(李苏宇) Ionization of two-electron atom (xenon) studied by Bohmian mechanics theory 2020 Chin. Phys. B 29 113201

Fig. 1.  

(a) Time-evolution of laser field whose central frequency and duration are 0.057 a.u., and 2 optical cycles, respectively. (b) Probability density image of ground state wave-function.

Fig. 2.  

Variation of single and double ionization probability of xenon atom with time for (a) 200 and (b) 1 × 106 pairs of BPs, with solid black and dotted blue (dashed red and dash-dotted magenta) curves denoting single (double) ionization probability calculated by TDSE and BM methods, respectively.

Fig. 3.  

Time-evolution of trajectories of 200 BP pairs in external field, showing [(a), (b)] singly, and [(c), (d)] doubly ionized BP pairs’ trajectories. Panels (a) and (c) refer to trajectories of the first BP and panels (b) and (d) refer to trajectories of the second one.

Fig. 4.  

Time-evolution of typical BP pair in Figs. 3(a) and 3(b) showing (a) trajectories and (b) energy of the first (solid black curve) and second (dash-dotted red curve) BPs.

Fig. 5.  

Time-evolution of trajectories and the force acting on the BP pair in Fig. 4(a) within recombination time: (a) trajectories of the first (solid black curve) and second (dash-dotted red curve) BPs from t = 103 a.u. to t = 120 a.u.; (b) quantum force acting on the first (solid black curve) and second (dash–dotted red curve) BPs, classical force acting on the first BP (sum of the Coulomb attraction from the nucleus and Coulomb repulsion from the second BP) (dashed magenta curve), and classical force acting on the second BP (dotted green curve), with bold solid blue curve denoting electric field force.

Fig. 6.  

(a) Work done by resultant force acting on the first BP (solid dark yellow curve) and its component forces, i.e., electric field force (bold solid blue curve), Coulomb force from the nucleus (bold dashed magenta curve), Coulomb force from the second BP (dashed magenta curve), and quantum force (solid black curve). (b) Work done by the resultant force acting on the second BP (solid dark yellow curve), and its component forces, i.e., electric field force (bold solid blue curve), Coulomb force from the nucleus (bold dotted green curve), Coulomb force from the first BP (dotted green curve), and quantum force (dash-dotted red curve).

[1]
Zhang B, Zhao J, Zhao Z X 2018 Chin. Phys. Lett. 35 043201 DOI: 10.1088/0256-307X/35/4/043201
[2]
Zhao Y T, Ma S Y, Jiang S C, Yang Y J, Zhao X, Chen J G 2019 Opt. Express 27 34392 DOI: 10.1364/OE.27.034392
[3]
Xu L, Fu L B 2019 Chin. Phys. Lett. 36 043202 DOI: 10.1088/0256-307X/36/4/043202
[4]
Zhao Y T, Xu X Q, Jiang S C, Zhao X, Chen J G, Yang Y J 2020 Phys. Rev. A 101 033413 DOI: 10.1103/PhysRevA.101.033413
[5]
Zhao Y T, Jiang S C, Zhao X, Chen J G, Yang Y J 2020 Opt. Lett. 45 2874 DOI: 10.1364/OL.389787
[6]
Li P C, Chu S I 2020 Chin. Phys. B 29 083202 DOI: 10.1088/1674-1056/ab9c0f
[7]
Xiao Z L, Quan W, Xu S P, Yu S G, Lai X Y, Chen J, Liu X J 2020 Chin. Phys. Lett. 37 043201 DOI: 10.1088/0256-307X/37/4/043201
[8]
Li F, Yang Y J, Chen J, Liu X J, Wei Z Y, Wang B B 2020 Chin. Phys. Lett. 37 113201
[9]
Ye D F, Liu X, Liu J 2008 Phys. Rev. Lett. 101 233003 DOI: 10.1103/PhysRevLett.101.233003
[10]
Liu Y Q, Ye D F, Liu J, Rudenko A, Tschuch S, Dürr M, Siegel M, Morgner U, Gong Q H, Moshammer R, Ullrich J 2010 Phys. Rev. Lett. 104 173002 DOI: 10.1103/PhysRevLett.104.173002
[11]
Sun X F, Li M, Ye D F, Xin G G, Fu L B, Xie X G, Deng Y K, Wu C Y, Liu J, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 113 103001 DOI: 10.1103/PhysRevLett.113.103001
[12]
Liu Y Q, Fu L B, Ye D F, Liu J, Li M, Wu C Y, Gong Q H, Moshammer R, Ullrich J 2014 Phys. Rev. Lett. 112 013003 DOI: 10.1103/PhysRevLett.112.013003
[13]
Liu Y Q, Tschuch S, Rudenko A, Dürr M, Siegel M, Morgner U, Moshammer R, Ullrich J 2008 Phys. Rev. Lett. 101 053001 DOI: 10.1103/PhysRevLett.101.053001
[14]
Corkum P B 1993 Phys. Rev. Lett. 71 1994 DOI: 10.1103/PhysRevLett.71.1994
[15]
Hu S H 2013 Phys. Rev. Lett. 111 123003 DOI: 10.1103/PhysRevLett.111.123003
[16]
Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I, DiMauro L F 2006 Phys. Rev. Lett. 96 133001 DOI: 10.1103/PhysRevLett.96.133001
[17]
Hao X L, Chen J, Li W D, Wang B B, Wang X D, Becker W 2014 Phys. Rev. Lett. 112 073002 DOI: 10.1103/PhysRevLett.112.073002
[18]
Maxwell A S, Figueira de Morisson Faria C 2016 Phys. Rev. Lett. 116 143001 DOI: 10.1103/PhysRevLett.116.143001
[19]
Haan S L, Smith Z S, Shomsky K N, Plantinga P W 2008 J. Phys. B 41 211002 DOI: 10.1088/0953-4075/41/21/211002
[20]
Ye D F, Liu J 2010 Phys. Rev. A 81 043402 DOI: 10.1103/PhysRevA.81.043402
[21]
Li M, Zhang G Z, Ding X, Yao J Q 2019 Chin. Phys. Lett. 36 063201 DOI: 10.1088/0256-307X/36/6/063201
[22]
Shao J, Zhang C P, Jia J C, Ma J L, Miao X Y 2019 Chin. Phys. Lett. 36 054203 DOI: 10.1088/0256-307X/36/5/054203
[23]
Xu L, Fu L B 2019 Chin. Phys. Lett. 36 043202 DOI: 10.1088/0256-307X/36/4/043202
[24]
Wyatt R E 2005 Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics Springer
[25]
Schiff J, Poirier B 2012 J. Chem. Phys. 136 031102 DOI: 10.1063/1.3680558
[26]
Hall M J W, Deckert D A, Wiseman H M 2014 Phys. Rev. X 4 041013
[27]
Sanz A, Miret-Artes S 2012 A Trajectory Description of Quantum Processes Springer
[28]
Lai X Y, Cai Q Y, Zhan M S 2009 New J. Phys. 11 113035 DOI: 10.1088/1367-2630/11/11/113035
[29]
Botheron P, Pons B 2010 Phys. Rev. A 82 021404 DOI: 10.1103/PhysRevA.82.021404
[30]
Lai X Y, Cai Q Y, Zhan M S 2010 Chin. Phys. B 19 020302 DOI: 10.1088/1674-1056/19/2/020302
[31]
Takemoto N, Becker A 2011 J. Chem. Phys. 134 074309 DOI: 10.1063/1.3553178
[32]
Song Y, Guo F M, Li S Y, Chen J G, Zeng S L, Yang Y J 2012 Phys. Rev. A 86 033424 DOI: 10.1103/PhysRevA.86.033424
[33]
Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418 DOI: 10.1103/PhysRevA.87.063418
[34]
Wu J, Augstein B B, Figueira de Morisson Faria C 2013 Phys. Rev. A 88 023415 DOI: 10.1103/PhysRevA.88.023415
[35]
Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 053419 DOI: 10.1103/PhysRevA.88.053419
[36]
Song Y, Zhao S, Guo F M, Yang Y J, Li S Y 2016 Chin. Phys. B 25 033204 DOI: 10.1088/1674-1056/25/3/033204
[37]
Song Y, Yang Y J, Guo F M, Li S Y 2017 J. Phys. B 50 095003 DOI: 10.1088/1361-6455/aa630d
[38]
Sawada R, Sato T, Ishikawa K L 2014 Phys. Rev. A 90 023404 DOI: 10.1103/PhysRevA.90.023404
[39]
Douguet N, Bartschat K 2018 Phys. Rev. A 97 013402 DOI: 10.1103/PhysRevA.97.013402
[40]
Jooya H Z, Telnov D A, Li P C, Chu S I 2015 J. Phys. B 48 195401 DOI: 10.1088/0953-4075/48/19/195401
[41]
Lai X Y, Liu X J 2020 Chin. Phys. B 29 013205 DOI: 10.1088/1674-1056/ab5c0f
[42]
Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202 DOI: 10.1088/1674-1056/23/5/053202
[43]
Holland P R 1993 The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics Cambridge Cambridge University Press
[44]
Bohm D 1952 Phys. Rev. 85 166 DOI: 10.1103/PhysRev.85.166
[1] Dynamic stabilization of atomic ionization in a high-frequency laser field with different initial angular momenta
Di-Yu Zhang(张頔玉), Yue Qiao(乔月), Wen-Di Lan(蓝文迪), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), and Da-Jun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103202.
[2] Resonance-enhanced two-photon ionization of hydrogen atom in intense laser field investigated by Bohmian-mechanics
Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), Su-Yu Li(李苏宇). Chin. Phys. B, 2020, 29(9): 093204.
[3] Electron excitation from ground state to first excited state: Bohmian mechanics method
Yang Song(宋阳), Shuang Zhao(赵双), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), Su-Yu Li(李苏宇). Chin. Phys. B, 2016, 25(3): 033204.
[4] Bohmian mechanics to high-order harmonic generation
Lai Xuan-Yang(赖炫扬), Cai Qing-Yu(蔡庆宇), and Zhan Ming-Sheng(詹明生). Chin. Phys. B, 2010, 19(2): 020302.
No Suggested Reading articles found!