Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿)1, Yang Xu(徐阳)2, Hong Zhang(张红)1,3,†, and Xin-Lu Cheng(程新路)2,3
1 College of Physics, Sichuan University, Chengdu 610065, China; 2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene (DVDGr) and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.
Received: 10 July 2020
Revised: 03 August 2020
Accepted manuscript online: 13 August 2020
PACS:
78.20.Bh
(Theory, models, and numerical simulation)
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 11974253 and 11774248).
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路) Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays 2021 Chin. Phys. B 30 017804
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.