Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054301    DOI: 10.1088/1674-1056/27/5/054301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of narrowband Lamb waves based on the Michelson interference technique

Tian-Ming Ye(叶天明), Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥)
Institute of Acoustics, Tongji University, Shanghai 200092, China
Abstract  An optical method of generating narrowband Lamb waves is presented. It is carried out with a laser line array in a thermoelastic regime implemented by the Michelson interference technique, where the formed array element spacing can be flexibly and conveniently changed to achieve selective mode excitation. In order to simulate the displacement response generated by this array, its intensity distribution function is presented to build a theoretical analysis model and to derive the integral representation of the displacement response. The experimental device and measuring system are built to generate and detect the Lamb waves on a steel plate. Numerical calculation results of narrowband Lamb wave displacement signals based on the theoretical model show good agreement with experimental results.
Keywords:  narrowband Lamb wave      selective generation      laser array      laser ultrasonics  
Received:  07 January 2018      Revised:  08 March 2018      Accepted manuscript online: 
PACS:  43.20.-f (General linear acoustics)  
  43.35.-c (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11374230 and 11774264).
Corresponding Authors:  Wen-Xiang Hu     E-mail:  wxhu@tongji.edu.cn

Cite this article: 

Tian-Ming Ye(叶天明), Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥) Generation of narrowband Lamb waves based on the Michelson interference technique 2018 Chin. Phys. B 27 054301

[12] Kenderian S, Djordjevic B B and Green Jr R E 2003 J. Acoust. Soc. Am. 113 261
[1] Rose J L 2002 J. Press. Vess.-T. ASME 124 273
[13] Choi S and Jhang K Y 2013 NDT & E Int. 57 1
[2] Lowe M J S, Alleyne D N and Cawley P 1998 Ultrasonics 36 147
[14] Kim H, Jhang K, Shin M and Kim J 2006 NDT & E Int. 39 312
[3] Rose J L, Avioli M J, Mudge P and Sanderson R 2004 NDT & E Int. 37 153
[15] Di Scalea F L, Berndt T P, Spicer J B and Djordjevic B B 1999 IEEE Trans. Sonics Ultrason. 46 1551
[4] Rose J L, Pelts S P and Quarry M J 1998 Ultrasonics 36 163
[16] Hecht E 2017 Optics, 5th edn. (Boston:Pearson Education) pp. 390-420
[5] Rose J L 1998 International Society for Optics and Photonics, April 16, 1998, Bangalore, India, p. 636
[17] Rose L R F 1984 J. Acoust. Soc. Am. 75 723
[6] Li J and Rose J L 2001 IEEE T. Ultrason. 48 761
[18] Miklowitz J 1978 The Theory of Elastic Waves and Waveguides (New York:Elsevier) pp. 231-297
[7] Jia X 1997 J. Acoust. Soc. Am. 101 834
[19] Hu W X and Qian M L 2000 Chin. J. Acoust. 19 174
[8] Khalili P and Cawley P 2016 IEEE T. Ultrason. 63 303
[20] Zhang S G and Hu W X 2008 Chin. Phys. Lett. 25 4314
[9] Shi Y, Wooh S C and Orwat M 2003 Ultrasonics 41 623
[21] Hu W X, Qian M L and Cantrell J H 2004 Appl. Phys. Lett. 85 4031
[10] Costley Jr R and Berthelot Y H 1993 Rev. Prog. Quant. Nondestr. Eval. 12 579
[22] Xu Y F 2016 A Study of Ultrasonic Testing and Imaging Methods Using Array and Multi-Component Technique (Ph.D. Dissertation) (Shanghai:Tongji University) (in Chinese)
[11] Cosenza C, Kenderian S, Djordjevic B B, Green R E and Pasta A 2007 IEEE Trans. Sonics Ultrason. 54 147
[12] Kenderian S, Djordjevic B B and Green Jr R E 2003 J. Acoust. Soc. Am. 113 261
[13] Choi S and Jhang K Y 2013 NDT & E Int. 57 1
[14] Kim H, Jhang K, Shin M and Kim J 2006 NDT & E Int. 39 312
[15] Di Scalea F L, Berndt T P, Spicer J B and Djordjevic B B 1999 IEEE Trans. Sonics Ultrason. 46 1551
[16] Hecht E 2017 Optics, 5th edn. (Boston:Pearson Education) pp. 390-420
[17] Rose L R F 1984 J. Acoust. Soc. Am. 75 723
[18] Miklowitz J 1978 The Theory of Elastic Waves and Waveguides (New York:Elsevier) pp. 231-297
[19] Hu W X and Qian M L 2000 Chin. J. Acoust. 19 174
[20] Zhang S G and Hu W X 2008 Chin. Phys. Lett. 25 4314
[21] Hu W X, Qian M L and Cantrell J H 2004 Appl. Phys. Lett. 85 4031
[22] Xu Y F 2016 A Study of Ultrasonic Testing and Imaging Methods Using Array and Multi-Component Technique (Ph.D. Dissertation) (Shanghai:Tongji University) (in Chinese)
[1] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[2] Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Ming-Liang Li(李明亮), Ming-Xi Deng(邓明晰), Guang-Jian Gao(高广健). Chin. Phys. B, 2016, 25(12): 124301.
[3] Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
Wang Wen-Juan (王文娟), Li Chong (李冲), Zhou Hong-Yi (周弘毅), Wu Hua (武华), Luan Xin-Xin (栾信信), Shi Lei (史磊), Guo Xia (郭霞). Chin. Phys. B, 2015, 24(2): 024209.
[4] Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier
Ma Li (马丽), Zhu Hong-Liang (朱洪亮), Liang Song (梁松), Zhao Ling-Juan (赵玲娟), Chen Ming-Hua (陈明华). Chin. Phys. B, 2013, 22(5): 054211.
[5] Propagation of phase-locked truncated Gaussian beam array in turbulent atmosphere
Zhou Pu(周朴), Liu Ze-Jin(刘泽金), Xu Xiao-Jun(许晓军), and Chu Xiu-Xiang(储修祥). Chin. Phys. B, 2010, 19(2): 024205.
[6] Numerical and experimental study on coherent beam combining of fibre amplifiers using simulated annealing algorithm
Zhou Pu(周朴), Ma Yan-Xing (马阎星), Wang Xiao-Lin(王小林), Ma Hao-Tong(马浩统), Xu Xiao-Jun(许晓军), and Liu Ze-Jin(刘泽金). Chin. Phys. B, 2010, 19(2): 024207.
[7] Investigation of titanium nitride coating by broadband laser ultrasonic spectroscopy
Gao Wei-Min (高伟民), Christ Glorieux, Walter Lauriks, Jan Thoen. Chin. Phys. B, 2002, 11(2): 132-138.
No Suggested Reading articles found!