Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 090703    DOI: 10.1088/1674-1056/ab9dec
GENERAL Prev   Next  

A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus

Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆)
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  A new heating method is proposed to increase the cell temperature of the 6-8 type multi-anvil apparatus without reducing the volume of the sample chamber. The double-layer heater assembly (DHA) has two layers of heaters connected in parallel. The temperature of the cell was able to reach 2500 ℃ by using 0.025 mm rhenium foils, and the temperature limit was increased by 25% compared with that of the traditional single-layer assembly. The power-temperature relationships for these two assemblies with different sizes were calibrated by using W/Re thermocouple at 20 GPa. When the volume of samples was the same, the DHA not only attained higher temperature, but also kept the holding time longer, compared to the traditional assembly. The results of more than ten experiments showed that the new 10/4 DHA with a relatively large sample size (2 mm in diameter and 4 mm in height) can work stably with the center temperature of the sample cavity exceeding 2300 ℃ under the pressure of 20 GPa.
Keywords:  double-layer heater      high pressure and high temperature      multi-anvil apparatus  
Received:  21 April 2020      Revised:  10 June 2020      Accepted manuscript online:  18 June 2020
PACS:  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51872189) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2018SCUH0022).
Corresponding Authors:  Zili Kou     E-mail:  kouzili@scu.edu.cn

Cite this article: 

Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆) A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus 2020 Chin. Phys. B 29 090703

[1] Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005
[2] McMillan P F 2002 Nat. Mater. 1 19
[3] Bundy F P, Hall H T, Strong H M and Wentorf R H 1955 Nature 176 51
[4] Wentorf Jr R H 1957 J. Chem. Phys. 26 956
[5] Dubrovinskaia N, Dubrovinsky L, Crichton W, Langenhorst F and Richter A 2005 Appl. Phys. Lett. 87 083106
[6] Ito E, Schubert G, Romanowicz B and Dziewonski A 2007 Treatise on geophysics: theory and practice-multianvil cells and high-pressure experimental methods (Holland: Elsevier) p. 233
[7] Keppler H and Frost D J 2005 Introduction to minerals under extreme conditions (Budapest: Eötvös University Press) p. 1
[8] Yamazaki D, Ito E, Yoshino T, Tsujino N, Yoneda A, Gomi H, Vazhakuttiyakam J, Sakurai M, Zhang Y Y, Higo Y and Tange Y 2015 C. R. Geoscience 351 253
[9] Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U and Goncharov A F 1996 Carbon 34 141
[10] Xie L J, Yoneda A, Yoshino T, Yamazaki D, Tsujino N, Higo Y, Tange Y, Irifune T, Shimei T and Ito E 2017 Rev. Sci. Instrum. 88 093904
[11] Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L and Peng F 2008 Acta. Phys. Sin. 57 5429 (in Chinese)
[12] Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L and Peng F 2009 Acta. Phys. Sin. 59 3107 (in Chinese)
[13] Wu J J, Liu F M, Zhang J W, Wang Q, Liu Y J, Liu J, Liu K and He D W 2018 High. Press. Res. 38 448
[14] Xie L J, Yoneda A, Yoshino T, Fei H Z and Ito E 2016 High Press. Res. 36 105
[15] Shabalin I L 2014 Ultra-High Temperature Materials I: Carbon (Graphene/Graphite) and Refractory Metals (Berlin: Springer)
[16] Wang W D, He D W, Tang M J, Li F J, Liu L and Bi Y 2012 Diam. Relat. Mater. 27-28 49
[17] Liang A K, Liu Y J, Liang H, Liu F M, Fan C, Zhang J W, Wu J J, Chen J and He D W 2018 High. Press. Res. 38 458
[18] Yin Y and Argent B J B 1993 J. Phase. Equilib. Diff. 14 439
[19] Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H, Wang Y B, Leng Y and He D W 2015 Appl. Phys. Lett. 106 51
[20] Billig E 1956 Proc. R. Soc. A 235 1200
[21] Kirkpatrick R J 1975 Am. Mineral. 60 798
[22] Glicksman M E and Lupulescu A O 2004 J. Cryst. Growth 264 541
[1] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[2] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[3] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[4] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[5] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[6] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[7] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[8] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[9] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[10] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[11] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[12] Inclusions in large diamond single crystals at different temperatures of synthesis
Fei Han(韩飞), Shang-Sheng Li(李尚升), Xue-Fei Jia(贾雪菲), Wei-Qin Chen(陈玮琴), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Kun-Peng Yu(于昆鹏), Jian-Kang Wang(王健康), Yu-Min Wu(吴玉敏), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(2): 028103.
[13] Function of large-volume high-pressure apparatus at SECUF
Pinwen Zhu(朱品文), Qiang Tao(陶强), Lu Wang(王璐), Zhi He(何志), Tian Cui(崔田). Chin. Phys. B, 2018, 27(7): 076103.
[14] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
[15] Different effect of NiMnCo or FeNiCo on the growth of type-IIa large diamonds with Ti/Cu as nitrogen getter
Shang-Sheng Li(李尚升), He Zhang(张贺), Tai-Chao Su(宿太超), Qiang Hu(胡强), Mei-Hua Hu(胡美华), Chun-Sheng Gong(龚春生), Hon-An Ma(马红安), Xiao-Peng Jia(贾晓鹏), Yong Li(李勇). Chin. Phys. B, 2017, 26(6): 068102.
No Suggested Reading articles found!