Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024210    DOI: 10.1088/1674-1056/28/2/024210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of CV mode selected resonator based on vectorial eigenvector method

You-You Hu(胡友友)1, Jian-Tai Dou(窦健泰)1, Bo-Wei Luo(罗博伟)2, Chang-Yu He(贺昌玉)2
1 Department of Physics, College of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
2 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The vectorial eigenvector method was applied to compute the cylindrical vector (CV) modes of polarization-dependent resonators and multiple modes in the CV mode selected resonator were tracked. Then, the mode characteristics of CV mode selected resonator depending on the Fresnel number, geometry parameters, and polarization parameters were simulated. When the difference in reflection coefficient between radial and azimuthal polarization is greater than 0.021 for spherical semi-confocal cavity, the radially polarized TM01* mode most probably appears in the resonator due to its lowest loss, which is consistent with an azimuthal polarization-selective resonant cavity. Moreover, the appropriate phase shift factor contributes to suppress non-rotationally symmetrical modes, which promotes the selection of CV modes. The Fresnel number between 2 and 2.5 are the appropriate range of values when the value of geometry parameters g2 is 0.5, both of which decide the effective Fresnel number.
Keywords:  laser resonators      polarization      polarization-selective devices      lasers and laser optics  
Received:  18 October 2018      Revised:  19 November 2018      Accepted manuscript online: 
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.25.Ja (Polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61308045) and the National Science and Technology Cooperation Project (Grant No. 2014DFR10870).
Corresponding Authors:  Chang-Yu He     E-mail:  cyhe@hust.edu.cn

Cite this article: 

You-You Hu(胡友友), Jian-Tai Dou(窦健泰), Bo-Wei Luo(罗博伟), Chang-Yu He(贺昌玉) Analysis of CV mode selected resonator based on vectorial eigenvector method 2019 Chin. Phys. B 28 024210

[1] Martens A, Dupraz K, Cassou K, Delerue N, Variola A and Zomer F 2014 Opt. Lett. 39 981
[2] Cui W, Song F, Song F, Ju D and Liu S 2016 Opt. Express 24 20062
[3] Chen W and Zhan Q 2007 Opt. Express 15 4106
[4] Li X, Cao Y, Tian N, Fu L and Gu M 2015 Optica 2 567
[5] Niziev V G and Nesterov A V 1999 J. Phys. D: Appl. Phys. 32 1455
[6] Meier M, Romano V and Feurer T 2007 Appl. Phys. A 86 329
[7] Zhang X and Yan L 2016 Plasmon 11 109
[8] Lu Y Q, Hu S L, Lu Y, Xu J and Wang J 2015 Acta Phys. Sin. 64 097301 (in Chinese)
[9] Stadler M and Schadt M 1996 Opt. Lett. 21 1948
[10] Oron R, Blit S, Davidson N, Friesemt A A, Bomzon Z and Hasman E 2000 Appl. Phys. Lett. 77 3322
[11] Bomzon Z, Biener G, Kleiner V and Hasman E 2002 Opt. Lett. 27 285
[12] Kozawa Y and Sato S 2005 Opt. Lett. 30 3063
[13] Chen H, Ling X, Chen Z, Li Q, Lv H, Yu H and Yi X 2016 Chin. Phys. B 25 074201
[14] Nesterov A V, Niziev V G and Yakunin V P 1999 J. Phys. D: Appl. Phys. 32 2871
[15] Moser T, Balmer J, Delbeke D, Muys P, Verstuyft S and Baets R 2005 Appl. Phys. B 80 707
[16] Kämpfe T, Tonchev S, Tishchenko A V, Gergov D and Parriaux O 2012 Opt. Express 20 5392
[17] Machavariani G, Lumer Y, Moshe I, Meir A, Jackel A and Davidson N 2007 Appl. Opt. 46 3304
[18] Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H and Wen S 2014 Opt. Express 22 17207
[19] Zhan Q 2009 Adv. Opt. Photon. 1 1
[20] Hu Y, He X, Liu S, Tang X and Li B 2017 Opt. Express 25 5186
[21] Hu Y, Tang X and Li B 2017 Proc. SPIE 10457 104571D
[22] Li B, Hu Y, Hu Y and Zhao J 2017 Appl. Opt. 56 3383
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[6] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[7] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
No Suggested Reading articles found!