Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098702    DOI: 10.1088/1674-1056/ab9c02
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A 3D biophysical model for cancer spheroid cell-enhanced invasion in collagen-oriented fiber microenvironment

Miaomiao Hai(海苗苗)1, Yanping Liu(刘艳平)1, Ling Xiong(熊玲)1, Guoqiang Li(李国强)1, Gao Wang(王高)1, Hongfei Zhang(张鸿飞)2, Jianwei Shuai(帅建伟)3, Guo Chen(陈果)1, Liyu Liu(刘雳宇)1
1 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China;
2 Hygeia International Cancer Hospital, Chongqing 401331, China;
3 Department of Physics, Xiamen University, Xiamen 361005, China
Abstract  The process of in situ tumors developing into malignant tumors and exhibiting invasive behavior is extremely complicated. From a biophysical point of view, it is a phase change process affected by many factors, including cell-to-cell, cell-to-chemical material, cell-to-environment interaction, etc. In this study, we constructed spheroids based on green fluorescence metastatic breast cancer cells MDA-MB-231 to simulate malignant tumors in vitro, while constructed a three-dimensional (3D) biochip to simulate a micro-environment for the growth and invasion of spheroids. In the experiment, the 3D spheroid was implanted into the chip, and the oriented collagen fibers controlled by collagen concentration and injection rate could guide the MDA-MB-231 cells in the spheroid to undergo directional invasion. The experiment showed that the oriented fibers greatly accelerated the invasion speed of MDA-MB-231 cells compared with the traditional uniform tumor micro-environment, namely obvious invasive branches appeared on the spheroids within 24 hours. In order to analyze this interesting phenomenon, we have developed a quantitative analyzing approach to explore strong angle correlation between the orientation of collagen fibers and invasive direction of cancer cell. The results showed that the oriented collagen fibers produced by the chip can greatly stimulate the invasion potential of cancer cells. This biochip is not only conducive to modeling cancer cell metastasis and studying cell invasion mechanisms, but also has the potential to build a quantitative evaluation platform that can be used in future chemical drug treatments.
Keywords:  3D biochip      spheroids      MDA-MB-231 cells      oriented collagen fibers      cancer cell invasion  
Received:  29 April 2020      Revised:  22 May 2020      Accepted manuscript online:  12 June 2020
PACS:  87.18.Gh (Cell-cell communication; collective behavior of motile cells)  
  87.14.em (Fibrils (amyloids, collagen, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974066 and 11674043), the Fundamental Research Funds for the Central Universities, China (Grant No. 2019CDYGYB007), and the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0477).
Corresponding Authors:  Liyu Liu     E-mail:  lyliu@cqu.edu.cn

Cite this article: 

Miaomiao Hai(海苗苗), Yanping Liu(刘艳平), Ling Xiong(熊玲), Guoqiang Li(李国强), Gao Wang(王高), Hongfei Zhang(张鸿飞), Jianwei Shuai(帅建伟), Guo Chen(陈果), Liyu Liu(刘雳宇) A 3D biophysical model for cancer spheroid cell-enhanced invasion in collagen-oriented fiber microenvironment 2020 Chin. Phys. B 29 098702

[1] Siegel R L, Miller K D and Jemal A 2019 CA Cancer J. Clin. 69 7
[2] Friedl P, Locker J, Sahai E and Segall J E 2012 Nat. Cell Biol. 14 777
[3] Saxena M and Christofori G 2013 Mol. Oncol. 7 283
[4] Alsarraj J and Hunter K W 2012 Int. Journal Breast Cancer 2012 670632
[5] Hsu Y Y, Chang K W, Chen T S, Lee K Y and Liu C S 2014 An integrated microfluidic chip for the study of metastasis and angiogenesis pp. 426-429
[6] Lu J L, Wang X C, Rong X H and Liu L Y 2015 Acta Phys. Sin. 64 058705 (in Chinese)
[7] Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W and Kunz-Schughart L A 2010 J. Biotechnol. 148 3
[8] Haycock J W 2013 Mol. Carcinog. 52 167
[9] Kimlin L C, Casagrande G and Virador V M 2013 Mol. Carcinog. 52 167
[10] Mayer B, Tischer A, Wieser A, Jauch K W and Funke I 2007 Mol. Cancer Ther. 6 3406S
[11] Markovitz-Bishitz Y, Tauber Y, Afrimzon E, Zurgil N, Sobolev M, Shafran Y, Deutsch A, Howitz S and Deutsch M 2010 Biomaterials 31 8436
[12] Zimmermann M, Box C and Eccles S A 2018 Math. Biosci Eng. 15 361
[13] Chen Z and Zou Y 2018 Math. Biosci Eng. 15 361
[14] Aryasomayajula B 2007 J. Biosci. Bioeng. 103 389
[15] Kurosawa H 2007 J. Biosci. Bioeng. 103 389
[16] Barrila J, Radtke A L, Crabbe A, Sarker S F, Herbst-Kralovetz M M, Ott C M and Nickerson C A 2010 Nat. Rev. Microbiol. 8 791
[17] Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D and Eccles S A 2012 BMC Biology 10 29
[18] Breslin S and O'Driscoll L 2013 Drug. Discov. Today 18 240
[19] Hu G, Li L and Xu W 2017 Front. Laboratory Med. 1 36
[20] Zhu J, Xiong G, Trinkle C and Xu R 2014 Histology & Histopathology 29 1083
[21] Kaur J and Reinhardt D P 2015 Stem Cell Biology and Tissue Engineering in Dental Sciences, Vishwakarma A, et al. eds. (Boston: Academic Press) pp. 25-45
[22] Järveläinen H, Sainio A, Koulu M, Wight T N and Penttinen R 2009 Mathematical Intelligencer 31 40
[23] Aguilera K Y, Huang H, Du W, Hagopian M M, Wang Z, Hinz S, Hwang T H, Wang H, Fleming J B, Castrillon D H, Ren X, Ding K and Brekken R A 2017 Mol. Cancer Ther. 16 2473
[24] Zhang M, Xu C, Jiang L and Qin J 2018 Toxicol. Res. (Camb.) 7 1048
[25] Schepers A, Li C, Chhabra A, Seney B T and Bhatia S 2016 Lab A Chip 16 2644
[26] Han W, Chen S, Wei Y, Fan Q and Liu L 2016 Proc. Natl. Acad. Sci. USA 113 11208
[27] Matusiewicz M 2011 Encyclopedia of Cancer, Schwab M ed. (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 1362-1265
[28] Cavo M, Fato M, Peñuela L, Beltrame F, Raiteri R and Scaglione S 2016 Sci. Rep. 6 35367
[29] Sun B 2015 Acta Phys. Sin. 64 058201 (in Chinese)
[30] Tibbitt M W and Anseth K S 2009 Biotechnol. Bioeng. 103 655
[31] Lee B, Konen J, Wilkinson S, Marcus A I and Jiang Y 2017 Sci. Rep. 7 39498
[32] Riching K M, Cox B L, Salick M R, Pehlke C, Riching A S, Ponik S M, Bass B R, Crone W C, Jiang Y, Weaver A M, Eliceiri K W and Keely P J 2014 Biophys. Journal 107 2546
[33] Starke J, Maaser K, Wehrle-Haller B and Friedl P 2013 Exp. Cell Research 319 2424
[34] He Y, Xiong L, Gao X, Hai M, Liu Y, Wang G, Chen G, Shuai J, Jiao Y, Zhang X, Liu R and Liu L 2020 Biochim. Biophys. Acta (BBA) - Gen. Subjects 1864 129460
[1] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
Yuenan Li(李岳南), Miaomiao Hai(海苗苗), Yu Zhao(赵宇), Yalei Lv(吕亚蕾), Yi He(何益), Guo Chen(陈果), Liyu Liu(刘雳宇), Ruchuan Liu(刘如川), Guigen Zhang. Chin. Phys. B, 2018, 27(12): 128703.
No Suggested Reading articles found!