College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
Traditional materials discovery is in ‘trial-and-error’ mode, leading to the issues of low-efficiency, high-cost, and unsustainability in materials design. Meanwhile, numerous experimental and computational trials accumulate enormous quantities of data with multi-dimensionality and complexity, which might bury critical ‘structure–properties’ rules yet unfortunately not well explored. Machine learning (ML), as a burgeoning approach in materials science, may dig out the hidden structure–properties relationship from materials bigdata, therefore, has recently garnered much attention in materials science. In this review, we try to shortly summarize recent research progress in this field, following the ML paradigm: (i) data acquisition → (ii) feature engineering → (iii) algorithm → (iv) ML model → (v) model evaluation → (vi) application. In section of application, we summarize recent work by following the ‘material science tetrahedron’: (i) structure and composition → (ii) property → (iii) synthesis → (iv) characterization, in order to reveal the quantitative structure–property relationship and provide inverse design countermeasures. In addition, the concurrent challenges encompassing data quality and quantity, model interpretability and generalizability, have also been discussed. This review intends to provide a preliminary overview of ML from basic algorithms to applications.
Received: 06 July 2020
Revised: 24 August 2020
Accepted manuscript online: 14 October 2020
Fund: Project support by the National Natural Science Foundation of China (Grant Nos. 11674237 and 51602211), the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China, and China Post-doctoral Foundation (Grant No. 7131705619).
A simple fully connected neural network structure with two hidden layers.
Fig. 3.
A 2D CNN structure with two max-pooling layers and one convolution layer.
Fig. 4.
The sketch of the methodology of RNN.
Fig. 5.
The workflow of the SR program.
Fig. 6.
The structure of the AI Feynman. Reprinted with permission from Ref. [137].
Fig. 7.
The mechanism of the BO method. Reprinted with permission from Ref. [150]. Copyright (2020) Springer Nature.
Fig. 8.
Four main parts of MCTS.
Fig. 9.
Typical learning curve, y axis refers to the value of loss function, and x axis is the number of examples.
Fig. 10.
(a) The workflow of classification of XRD data with data augmentation method. (b) The structure of CNN model they used. Reprinted with permission from Ref. [2].
Conventional
Deep learning
Tree-based
Descriptor
Active
Unsupervised
Thermodynamic stability
[86,188–193]
[26]
[188–[190,194–196]
[195]
[86]
Band gap
[31,193,197–204]
[20,203,205]
[31,196,201,204]
[33]
[206]
Superconductivity
[207–210]
[211,212]
[19,213,214]
[215]
[207,210,213]
Thermal conductivity
[79,216–221]
[79,218,222,223]
[79,224–227]
[216,222,228–230]
[216]
Curie temperature
[6,231–236]
[235–237]
[6]
[233,236]
Bulk and shear moduli
[238–242]
[97,102,243]
[25,240,244–246]
[246]
Debye temperature and heat capacity
[239,242,247,248]
[25,248]
Density of states
[87,249,250]
[251]
[249,252]
Dielectric breakdown strength
[23,253–255]
[255]
[253]
grain boundary structure and properties
[256–259]
[260]
[257,258]
[261,262]
[263]
Lattice parameter
[264–266]
[266]
Lithium ion batteries SOC and conduction
[22,267–274]
[275–277]
[22,273,278]
melting temperature
[221,279–282]
[279]
[279]
Table 4.
ML application for some materials properties.
Fig. 11.
The main workflow of screening stable halide perovskites via ML in combination with DFT calculations. Reprinted with permission from Ref. [192]. Copyright (2019) John Wiley and Sons.
Fig. 12.
(a) The search progress for the halide perovskites with ideal decomposition energy and band gap. (b) The performance of BO. Reprinted with permission from Ref. [150]. Copyright (2020) Springer Nature.
Fig. 13.
Workflow of screening semiconductors from the MXene database and predicting band gaps. Reprinted with permission from Ref. [200]. Copyright (2018) American Chemical Society.
Fig. 14.
(a) The representation matrix of doped graphene supercell systems. (b) One of the CNN structures to predict band gaps. Reprinted with permission from Ref. [20].
Fig. 15.
(a) Prediction on testing set of low-Tc, iron-based, and cuprate superconductors. (b)–(c) Prediction from model trained on data only containing low-Tc materials. (d)–(e) Prediction from model trained on data only containing cuprate materials. Reprinted with permission from Ref. [19].
Fig. 16.
(a) The prediction result for ITR from LSBoost. (b) The relation between ITR prediction and the thickness and temperature. Reprinted with permission from Ref. [226]. Copyright (2018) American Chemical Society.
Fig. 17.
The workflow of MCTS for optimizing the surface roughness. Reprinted with permission from Ref. [229].
Fig. 18.
(a) The design loop for searching high-temperature ferroelectric perovskites. Reprinted from Ref. [6]. (b) The relation between the Tc and chemical composition for the ternary system Al–Co–Fe. Reprinted with permission from Ref. [236]. Copyright (2019) American Physical Society.
Fig. 19.
The workflow of the work of Raccuglia[78]et al. Copyright (2016) Springer Nature.
Oviedo F, Ren Z, Sun S, Settens C, Liu Z, Hartono N T P, Ramasamy S, DeCost B L, Tian S I P, Romano G, Gilad Kusne A, Buonassisi T 2019 npj Comput. Mater.5 60 DOI: 10.1038/s41524-019-0196-x
[3]
Ryan K, Lengyel J, Shatruk M 2018 J. Am. Chem. Soc.140 10158 DOI: 10.1021/jacs.8b03913
[4]
Ziletti A, Kumar D, Scheffler M, Ghiringhelli L M 2018 Nat. Commun.9 2775 DOI: 10.1038/s41467-018-05169-6
[5]
Podryabinkin E V, Tikhonov E V, Shapeev A V, Oganov A R 2019 Phys. Rev. B99 064114 DOI: 10.1103/PhysRevB.99.064114
[6]
Balachandran P V, Kowalski B, Sehirlioglu A, Lookman T 2018 Nat. Commun.9 1668 DOI: 10.1038/s41467-018-03821-9
Fischer C C, Tibbetts K J, Morgan D, Ceder G 2006 Nat. Mater.5 641 DOI: 10.1038/nmat1691
[9]
Segler M H S, Preuss M, Waller M P 2018 Nature555 604 DOI: 10.1038/nature25978
[10]
Coley C W, Thomas D A, Lummiss J A M, Jaworski J N, Breen C P, Schultz V, Hart T, Fishman J S, Rogers L, Gao H, Hicklin R W, Plehiers P P, Byington J, Piotti J S, Green W H, John Hart A, Jamison T F, Jensen K F 2019 Science365 eaax1566 DOI: 10.1126/science.aax1566
[11]
Frey N C, Wang J, Vega Bellido G I, Anasori B, Gogotsi Y, Shenoy V B 2019 ACS Nano13 3031 DOI: 10.1021/acsnano.8b08014
[12]
Rao C N R, Natarajan S, Neeraj S 2000 J. Am. Chem. Soc.122 2810 DOI: 10.1021/ja993892f
[13]
Kim E, Huang K, Saunders A, McCallum A, Ceder G, Olivetti E 2017 Chem. Mater.29 9436 DOI: 10.1021/acs.chemmater.7b03500
[14]
Vasudevan R K, Laanait N, Ferragut E M, Wang K, Geohegan D B, Xiao K, Ziatdinov M, Jesse S, Dyck O, Kalinin S V 2018 npj Comput. Mater.4 30 DOI: 10.1038/s41524-018-0086-7
[15]
Maksov A, Dyck O, Wang K, Xiao K, Geohegan D B, Sumpter B G, Vasudevan R K, Jesse S, Kalinin S V, Ziatdinov M 2019 npj Comput. Mater.5 12 DOI: 10.1038/s41524-019-0152-9
Sanchez-Gonzalez A, Micaelli P, Olivier C, Barillot T R, Ilchen M, Lutman A A, Marinelli A, Maxwell T, Achner A, Agåker M, Berrah N, Bostedt C, Bozek J D, Buck J, Bucksbaum P H, Montero S C, Cooper B, Cryan J P, Dong M, Feifel R, Frasinski L J, Fukuzawa H, Galler A, Hartmann G, Hartmann N, Helml W, Johnson A S, Knie A, Lindahl A O, Liu J, Motomura K, Mucke M, O’Grady C, Rubensson J E, Simpson E R, Squibb R J, Såthe C, Ueda K, Vacher M, Walke D J, Zhaunerchyk V, Coffee R N, Marangos J P 2017 Nat. Commun.8 15461 DOI: 10.1038/ncomms15461
[18]
Ghosh K, Stuke A, Todorović M, Jørgensen P B, Schmidt M N, Vehtari A, Rinke P 2019 Adv. Sci.6 1801367 DOI: 10.1002/advs.201801367
[19]
Stanev V, Oses C, Kusne A G, Rodriguez E, Paglione J, Curtarolo S, Takeuchi I 2018 npj Comput. Mater.4 29 DOI: 10.1038/s41524-018-0085-8
[20]
Dong Y, Wu C, Zhang C, Liu Y, Cheng J, Lin J 2019 npj Comput. Mater.5 26 DOI: 10.1038/s41524-019-0165-4
[21]
Liu Y, Wu J, Wang Z, Lu X G, Avdeev M, Shi S, Wang C, Yu T 2020 Acta Mater.195 454 DOI: 10.1016/j.actamat.2020.05.001
[22]
Ng M F, Zhao J, Yan Q, Conduit G J, Seh Z W 2020 Nat. Mach. Intell.2 161 DOI: 10.1038/s42256-020-0156-7
[23]
Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun.10 1843 DOI: 10.1038/s41467-019-09874-8
[24]
Xue D, Balachandran P V, Hogden J, Theiler J, Xue D, Lookman T 2016 Nat. Commun.7 11241 DOI: 10.1038/ncomms11241
[25]
Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A 2017 Nat. Commun.8 15679 DOI: 10.1038/ncomms15679
Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, Ceder G 2013 Comput. Mater. Sci.68 314 DOI: 10.1016/j.commatsci.2012.10.028
[36]
Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B 2016 Comput. Mater. Sci.111 218 DOI: 10.1016/j.commatsci.2015.09.013
[37]
Jain A, Ong S P, Chen W, Medasani B, Qu X, Kocher M, Brafman M, Petretto G, Rignanese G M, Hautier G, Gunter D, Persson K A 2015 Concurr. Comput.27 5037 DOI: 10.1002/cpe.3505
[38]
Lambert H, Fekete A, Kermode J R, De A 2018 Comput. Phys. Commun.232 256 DOI: 10.1016/j.cpc.2018.04.029
[39]
Mathew K, Singh A K, Gabriel J J, Choudhary K, Sinnott S B, Davydov A V, Tavazza F, Hennig R G 2016 Comput. Mater. Sci.122 183 DOI: 10.1016/j.commatsci.2016.05.020
[40]
Mathew K, Montoya J H, Faghaninia A, Dwarakanath S, Aykol M, Tang H, heng I, Smidt T, Bocklund B, Horton M, Dagdelen J, Wood B, Liu Z K, Neaton J, Ong S P, Persson K, Jain A 2017 Comput. Mater. Sci.139 140 DOI: 10.1016/j.commatsci.2017.07.030
[41]
Supka A R, Lyons T E, Liyanage L, D’Amico P, Al Rahal Al Orabi R, Mahatara S, Gopal P, Toher C, Ceresoli D, Calzolari A, Curtarolo S, Nardelli M B, Fornari M 2017 Comput. Mater. Sci.136 76 DOI: 10.1016/j.commatsci.2017.03.055
[42]
Hjorth Larsen A, Jørgen Mortensen J, Blomqvist J, Castelli I E, Christensen R, Dułak M, Friis J, Groves M N, Hammer B, Hargus C, Hermes E D, Jennings P C, Bjerre Jensen P, Kermode J, Kitchin J R, Leonhard Kolsbjerg E, Kubal J, Kaasbjerg K, Lysgaard S, Bergmann Maronsson J, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen K S, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen K W 2017 J. Phys. Condens. Matter29 273002 DOI: 10.1088/1361-648X/aa680e
Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater.1 15010 DOI: 10.1038/npjcompumats.2015.10
[47]
Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T, Thygesen K S 2018 2D Mater.5 042002 DOI: 10.1088/2053-1583/aacfc1
[48]
Stevanović V, Lany S, Zhang X, Zunger A 2012 Phys. Rev. B - Condens. Matter Mater. Phys.85 115104 DOI: 10.1103/PhysRevB.85.115104
[49]
Graulis S, Chateigner D, Downs R T, Yokochi A F T, Quirós M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A 2009 J. Appl. Crystallogr.42 726 DOI: 10.1107/S0021889809016690
Landis D D, Hummelshøj J S, Nestorov S, Greeley J, Dulłak M, Bligaard T, Nørskov J K, Jacobsen K W 2012 Comput. Sci. Eng.14 51 DOI: 10.1109/MCSE.2012.16
[58]
Gorai P, Gao D, Ortiz B, Miller S, Barnett S A, Mason T, Lv Q, Stevanović V, Toberer E S 2016 Comput. Mater. Sci.112 368 DOI: 10.1016/j.commatsci.2015.11.006
[59]
Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor R H, Nelson L J, Hart G L W, Sanvito S, Buongiorno-Nardelli M, Mingo N, Levy O 2012 Comput. Mater. Sci.58 227 DOI: 10.1016/j.commatsci.2012.02.002
[60]
Gaulton A, Hersey A, Nowotka M L, Patricia Bento A, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis L J, Cibrian-Uhalte E, Davies M, Dedman N, Karlsson A, Magarinos M P, Overington J P, Papadatos G, Smit I, Leach A R 2017 Nucleic Acids Res.45 D945 DOI: 10.1093/nar/gkw1074
[61]
Zakutayev A, Wunder N, Schwarting M, Perkins J D, White R, Munch K, Tumas W, Phillips C 2018 Sci. Data5 180053 DOI: 10.1038/sdata.2018.53
[62]
Ramakrishnan R, Dral P O, Rupp M, Von Lilienfeld O A 2014 Sci. Data1 140022 DOI: 10.1038/sdata.2014.22
[63]
Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera R S, Gold-Parker A, Vogt L, Brockway A M, Aspuru-Guzik A 2011 J. Phys. Chem. Lett.2 2241 DOI: 10.1021/jz200866s
[64]
Hill J, Mannodi-Kanakkithodi A, Ramprasad R, Meredig B 2018 Computational Materials System Design Cham Springer International Publishing 193 DOI: 10.1007/978-3-319-68280-8_9
Krallinger M, Rabal O, Lourenço A, Oyarzabal J, Valencia A 2017 Chem. Rev.117 7673 DOI: 10.1021/acs.chemrev.6b00851
[75]
Jensen Z, Kim E, Kwon S, Gani T Z H, Román-Leshkov Y, Moliner M, Corma A, Olivetti E 2019 ACS Cent. Sci.5 892 DOI: 10.1021/acscentsci.9b00193
[76]
Fourches D, Muratov E, Tropsha A 2010 J. Chem. Inf. Model.50 1189 DOI: 10.1021/ci100176x
[77]
Wilkinson M D, Dumontier M, Aalbersberg Ij J, Appleton G, Axton M, Baak A, Blomberg N, Boiten J W, da Silva Santos L B, Bourne P E, Bouwman J, Brookes A J, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo C T, Finkers R, Gonzalez-Beltran A, Gray A J G, Groth P, Goble C, Grethe J S, Heringa J t, Hoen P A C, Hooft R, Kuhn T, Kok R, Kok J, Lusher S J, Martone M E, Mons A, Packer A L, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz M A, Thompson M, Van Der Lei J, Van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B 2016 Sci. Data3 160018 DOI: 10.1038/sdata.2016.18
[78]
Raccuglia P, Elbert K C, Adler P D F, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J, Norquist A J 2016 Nature533 73 DOI: 10.1038/nature17439
[79]
Yang H, Zhang Z, Zhang J, Zeng X C 2018 Nanoscale10 19092 DOI: 10.1039/C8NR05703F
[80]
Gilmer J, Schoenholz S S, Riley P F, Vinyals O, Dahl G E 2017 th Int. Conf. Mach. Learn. ICML 20173 2053 DOI: 10.5555/3305381.3305512
[81]
Balachandran P V, Emery A A, Gubernatis J E, Lookman T, Wolverton C, Zunger A 2018 Phys. Rev. Mater.2 043802 DOI: 10.1103/PhysRevMaterials.2.043802
Rupp M, Tkatchenko A, Müller K R, Von Lilienfeld O A 2012 Phys. Rev. Lett.108 058301 DOI: 10.1103/PhysRevLett.108.058301
[86]
Faber F, Lindmaa A, Von Lilienfeld O A, Armiento R 2015 Int. J. Quantum Chem.115 1094 DOI: 10.1002/qua.24917
[87]
Schütt K T, Glawe H, Brockherde F, Sanna A, Müller K R, Gross E K U 2014 Phys. Rev. B89 205118 DOI: 10.1103/PhysRevB.89.205118
[88]
Huang B, Von Lilienfeld O A 2016 J. Chem. Phys.145 161102 DOI: 10.1063/1.4964627
[89]
Hansen K, Biegler F, Ramakrishnan R, Pronobis W, Von Lilienfeld O A, Müller K R, Tkatchenko A 2015 J. Phys. Chem. Lett.6 2326 DOI: 10.1021/acs.jpclett.5b00831
[90]
Rogers D, Hahn M 2010 J. Chem. Inf. Model.50 742 DOI: 10.1021/ci100050t
[91]
Huo H, Rupp M 2017 arXiv:1704.06439 [physics.chem-ph]
Mezey Paul G R, Stephen Berry J I B 1994 Graph Theoretical Approaches to Chemical Reactivity Bonchev D, Mekenyan O Dordrecht Springer Netherlands DOI: 10.1007/978-94-011-1202-4
[96]
Scarselli Franco, Gori Marco, Tsoi Ah Chung, Markus Hagenbuchner G M 2009 IEEE Trans. Neural Networks20 61 DOI: 10.1109/TNN.2008.2005605
Ramsundar B, Eastman P, Walters P, Pande V, Leswing K, Wu Z 2019 Deep Learning for the Life Sciences Sebastopol O’Reilly Media
[101]
Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I, Jain A 2018 Comput. Mater. Sci.152 60 DOI: 10.1016/j.commatsci.2018.05.018
Himanen L, Jäger M O J, Morooka E V, Federici Canova F, Ranawat Y S, Gao D Z, Rinke P, Foster A S 2020 Comput. Phys. Commun.247 106949 DOI: 10.1016/j.cpc.2019.106949
[104]
Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys.148 241722 DOI: 10.1063/1.5019779
[105]
Landrum G 2016 rdkit: open source cheminformatics software
Baranwal A, Bagwe B R, and M V 2011 J. Mach. Learn. Res.12 128
[110]
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M others 2016 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16) 265 DOI: 10.1002/adts.201900215
[111]
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S 2019 Advances in Neural Information Processing Systems 32 Wallach H, Larochelle H, Beygelzimer A, Alché-Buc F, Fox E, Garnett R Curran Associates, Inc. 8024
[112]
Liu Y, Wu J, Avdeev M, Shi S 2020 Adv. Theory Simul.3 1900215 DOI: 10.1002/adts.201900215
[113]
Chauhan N K, Singh K 2019 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018 IEEE 347 DOI: 10.1109/GUCON.2018.8675097
Prokhorenkova L, Gusev G, Vorobev A, Dorogush A V, Gulin A 2018 Advances in neural information processing systems 6638 DOI: 10.1145/2939672.2939785
[126]
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T Y 2017 Advances in Neural Information Processing Systems 30 Guyon I, Luxburg U V, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R Curran Associates, Inc. 3146 DOI: 10.5555/3294996.3295074
[127]
Freund Y, Schapire R E 1996 Proc. 13th Int. Conf. Mach. Learn.148 DOI: 10.5555/3091696.3091715
[128]
Chen T, Guestrin C 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD’16 New York, NY, USA ACM 785 DOI: 10.1145/2939672.2939785
[129]
Xuan P, Sun C, Zhang T, Ye Y, Shen T, Dong Y 2019 Front. Genet.10 459 DOI: 10.3389/fgene.2019.00459
Kingma D P, Welling M 2019 Found. Trends®Mach. Learn.12 307 DOI: 10.1561/2200000056
[133]
Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath A A 2018 IEEE Signal Process. Mag.35 53 DOI: 10.1109/MSP.2017.2765202
[134]
Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli L M 2018 Phys. Rev. Mater.2 83802 DOI: 10.1103/PhysRevMaterials.2.083802
[135]
Augusto D A, Barbosa H J C 2000 Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks vol 2000-Janua IEEE Comput. Soc 173 DOI: 10.1109/SBRN.2000.889734
[136]
Wang Y, Wagner N, Rondinelli J M 2019 MRS Commun.9 793 DOI: 10.1557/mrc.2019.85
Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh C T, De Luna P, Yu Z, Rasouli A S, Brodersen P, Sun S, Voznyy O, Tan C S, Askerka M, Che F, Liu M, Seifitokaldani A, Pang Y, Lo S C, Ip A, Ulissi Z, Sargent E H 2020 Nature581 178 DOI: 10.1038/s41586-020-2242-8
Dieb T M, Ju S, Shiomi J, Tsuda K 2019 MRS Commun.9 532 DOI: 10.1557/mrc.2019.40
[152]
Dieb T M, Hou Z, Tsuda K 2018 J. Chem. Phys.148 241716 DOI: 10.1063/1.5018065
[153]
M Dieb T, Ju S, Yoshizoe K, Hou Z, Shiomi J, Tsuda K 2017 Sci. Technol. Adv. Mater.18 498 DOI: 10.1080/14686996.2017.1344083
[154]
Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M G, Graves A, Riedmiller M, Fidjeland A K, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D 2015 Nature518 529 DOI: 10.1038/nature14236
[155]
Meredig B, Antono E, Church C, Hutchinson M, Ling J, Paradiso S, Blaiszik B, Foster I, Gibbons B, Hattrick-Simpers J, Mehta A, Ward L 2018 Mol. Syst. Eng.3 819 DOI: 10.1039/C8ME00012C
[156]
Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature559 547 DOI: 10.1038/s41586-018-0337-2
Gao Y, Yang H, Zhang P, Zhou C, Hu Y 2019 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings 1
[159]
Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez J E, Stoica I 2018 arXiv:1807.05118 [cs.LG]
[160]
Microsoft 2020 NNI (Neural Network Intelligence)
[161]
Bergstra J, Komer B, Eliasmith C, Yamins D, Cox D D 2015 Comput. Sci. Discov.8 014008 DOI: 10.1088/1749-4699/8/1/014008
[162]
Jacobs R, Mayeshiba T, Afflerbach B, Miles L, Williams M, Turner M, Finkel R, Morgan D 2020 Comput. Mater. Sci.176 109544 DOI: 10.1016/j.commatsci.2020.109544
[163]
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 2014 J. Mach. Learn. Res.15 1929 DOI: 10.5555/2627435.2670313
Oliynyk A O, Adutwum L A, Rudyk B W, Pisavadia H, Lotfi S, Hlukhyy V, Harynuk J J, Mar A, Brgoch J 2017 J. Am. Chem. Soc.139 17870 DOI: 10.1021/jacs.7b08460
Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W P 2002 J. Artif. Int. Res.16 321 DOI: 10.5555/1622407.1622416
[168]
Park W B, Chung J, Jung J, Sohn K, Singh S P, Pyo M, Shin N, Sohn K S 2017 IUCrJ.4 486 DOI: 10.1107/S205225251700714X
[169]
Oganov A R, Glass C W 2006 J. Chem. Phys.124 244704 DOI: 10.1063/1.2210932
[170]
Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res.44 227 DOI: 10.1021/ar1001318
[171]
Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun.184 1172 DOI: 10.1016/j.cpc.2012.12.009
[172]
Wu S Q, Ji M, Wang C Z, Nguyen M C, Zhao X, Umemoto K, Wentzcovitch R M, Ho K M 2014 J. Phys.: Condens. Matter26 035402 DOI: 10.1088/0953-8984/26/3/035402
Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chin. Phys. B27 067503 DOI: 10.1088/1674-1056/27/6/067503
[238]
De Jong M, Chen W, Notestine R, Persson K, Ceder G, Jain A, Asta M, Gamst A 2016 Sci. Rep.6 34256 DOI: 10.1038/srep34256
[239]
Furmanchuk A, Agrawal A, Choudhary A 2016 RSC Adv.6 95246 DOI: 10.1039/C6RA19284J
[240]
Mansouri Tehrani A, Oliynyk A O, Parry M, Rizvi Z, Couper S, Lin F, Miyagi L, Sparks T D, Brgoch J 2018 J. Am. Chem. Soc.140 9844 DOI: 10.1021/jacs.8b02717
Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M, Palmer A, Settels V, Jaakkola T, Jensen K, Barzilay R 2019 J. Chem. Inf. Model.59 3370 DOI: 10.1021/acs.jcim.9b00237
[298]
Faber F A, Hutchison L, Huang B, Gilmer J, Schoenholz S S, Dahl G E, Vinyals O, Kearnes S, Riley P F, Von Lilienfeld O A 2017 J. Chem. Theory Comput.13 5255 DOI: 10.1021/acs.jctc.7b00577
[299]
Kearnes S, McCloskey K, Berndl M, Pande V, Riley P 2016 J. Comput. Aided. Mol.30 595 DOI: 10.1007/s10822-016-9938-8
[300]
Li Y, Tarlow D, Brockschmidt M, Zemel R 2015 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings 1
[301]
Schütt K T, Arbabzadah F, Chmiela S, Müller K R, Tkatchenko A 2017 Nat. Commun.8 13890 DOI: 10.1038/ncomms13890
[302]
Wu Z, Ramsundar B, Feinberg E N, Gomes J, Geniesse C, Pappu A S, Leswing K, Pande V 2018 Chem. Sci.9 513 DOI: 10.1039/C7SC02664A
[303]
Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T, Müller K R 2017 Sci. Adv.3 e1603015 DOI: 10.1126/sciadv.1603015
[304]
Lu C, Liu Q, Wang C, Huang Z, Lin P, He L 2019 Proceedings of the AAAI Conference on Artificial Intelligence33 1052 DOI: 10.1609/aaai.v33i01.33011052
Chen B, Barzilay R, Jaakkola T 2019 arXiv:1905.12712 [cs.LG]
[308]
Sanyal S, Balachandran J, Yadati N, Kumar A, Rajagopalan P, Sanyal S, Talukdar P 2018 arXiv:1811.05660 [cs.LG]
[309]
Yamamoto T 2019 Crystal Graph Neural Networks for Data Mining in Materials Science Yokohama Research Institute for Mathematical and Computational Sciences, LLC
[310]
Klicpera J, Groß J, Günnemann S 2020 arXiv:2003.03123 [cs.LG]
Houben C, Peremezhney N, Zubov A, Kosek J, Lapkin A A 2015 Org. Process Res. Dev.19 1049 DOI: 10.1021/acs.oprd.5b00210
[318]
Collins K D, Gensch T, Glorius F 2014 Nat. Chem.6 859 DOI: 10.1038/nchem.2062
[319]
Santanilla A B, Regalado E L, Pereira T, Shevlin M, Bateman K, Campeau L, Schneeweis J, Berritt S, Shi Z, Nantermet P, Liu Y, Helmy R, Welch C J, Vachal P, Davies I W, Cernak T, Dreher S D 2015 Science347 49 DOI: 10.1126/science.1259203
[320]
Boyarshinov V 1997 Machine Learning Long Beach McGraw-Hill
Yang S, Wang Y, Liu P, Cheng Y B, Zhao H J, Yang H G 1992 Nat. Energy1 1 DOI: 10.1038/ng0492-1
[323]
Zhang H, Ren X, Chen X, Mao J, Cheng J, Zhao Y, Liu Y, Milic J, Yin W J, Grätzel M, Choy W C H 2018 Energy Environ. Sci.11 2253 DOI: 10.1039/C8EE00580J
[324]
Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A 2017 Science358 739 DOI: 10.1126/science.aam6323
[325]
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Il S 2015 Nature517 476 DOI: 10.1038/nature14133
Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A A, Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci.9 490 DOI: 10.1039/C5EE03522H
[328]
Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater.28 9986 DOI: 10.1002/adma.201603062
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science306 666 DOI: 10.1126/science.1102896
[331]
Kwak J, Jo Y, Song S, Kim J H, Kim S Y, Lee J U, Lee S, Park J, Kim K, Do G, Yoo J W, Kim S Y, Kong Y M, Lee G H, Lee W G, Park J, Xu X, Cheong H, Yoon E, Lee Z, Kwon S Y 2018 Adv. Mater.30 1707260 DOI: 10.1002/adma.201707260
[332]
Li Y, Zhou Z, Zhang S, Chen Z 2008 J. Am. Chem. Soc.130 16739 DOI: 10.1021/ja805545x
[333]
Zheng F, Cai C, Ge S, Zhang X, Liu X, Lu H, Zhang Y, Qiu J, Taniguchi T, Watanabe K, Jia S, Qi J, Chen J H, Sun D, Feng J 2016 Adv. Mater.28 4845 DOI: 10.1002/adma.201600100
[334]
Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys.14 900 DOI: 10.1038/s41567-018-0189-6
[335]
Xu M, Tang B, Zhu C, Lu Y, Zhu C, Zheng L, Zhang J, Han N, Guo Y, Di J, Song P, He Y, Kang L, Zhang Z, Zhao W, Guan C, Wang X, Liu Z 2019 arXiv:1910.04603 [cond-mat.mtrl-sci]
[336]
Leo Frkanec Snežzana Miljanić, Mladen Žini ć Tomislav Biljan Zlatko Meić 2007 J. Raman Spectrosc.38 1538 DOI: 10.1002/jrs.1902
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Di Zhong, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature546 270 DOI: 10.1038/nature22391
[339]
Geim A K, Novoselov K S 2007 Nat. Mater.6 183 DOI: 10.1038/nmat1849
[340]
Li Y, Kong Y, Peng J, Yu C, Li Z, Li P, Liu Y, Gao C F, Wu R 2019 J. Materiomics5 413 DOI: 10.1016/j.jmat.2019.03.003
[341]
Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y, Zhu Y 2017 Extrem. Mech. Lett.13 42 DOI: 10.1016/j.eml.2017.01.008
[342]
De Heer W A, Berger C, Ruan M, Sprinkle M, Li X, Hu Y, Zhang B, Hankinson J, Conrad E 2011 Proc. Natl. Acad. Sci. USA108 16900 DOI: 10.1073/pnas.1105113108
[343]
Gao Y, Cao T, Cellini F, Berger C, De Heer W A, Tosatti E, Riedo E, Bongiorno A 2018 Nat. Nanotechnol.13 133 DOI: 10.1038/s41565-017-0023-9
[344]
Cellini F, Lavini F, Berger C, De Heer W, Riedo E 2019 2D Mater.6 035043 DOI: 10.1088/2053-1583/ab1b9f
[345]
Ziatdinov M, Dyck O, Maksov A, Li X, Sang X, Xiao K, Unocic R R, Vasudevan R, Jesse S, Kalinin S V 2017 ACS Nano11 12742 DOI: 10.1021/acsnano.7b07504
Hernandez A, Balasubramanian A, Yuan F, Mason S A M, Mueller T 2019 npj Comput. Mater.5 112 DOI: 10.1038/s41524-019-0249-1
[354]
Weng B, Song Z, Zhu R, Yan Q, Sun Q, Grice C G, Yan Y, Yin W J 2020 Nat. Commun.11 3513 DOI: 10.1038/s41467-020-17263-9
[355]
Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nat. Commun.9 4168 DOI: 10.1038/s41467-018-06682-4
[356]
Silver D, Huang A, Maddison C J, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D 2016 Nature529 484 DOI: 10.1038/nature16961
[357]
Cao Z P, Zhao Y J, Liao J H, Yang X B 2017 RSC Adv.7 37881 DOI: 10.1039/C7RA06891C
[358]
Li X, Yang Z, Catherine Brinson L, Choudhary A, Agrawal A, Chen W 2018 Proceedings of the ASME Design Engineering Technical Conference2B-2018 1 DOI: 10.1115/DETC2018-85633
[359]
Nouira A, Sokolovska N, Crivello J C 2019 CEUR Workshop Proc.2350
[360]
Sanchez-Lengeling B, Outeiral C, Guimaraes G L, Aspuru-Guzik A 2017 ChemRxiv.5309668.v3
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.