Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100302    DOI: 10.1088/1674-1056/ab99b2
General Prev   Next  

Damping of displaced chaotic light field in amplitude dissipation channel

Ke Zhang(张科)1, Lan-Lan Li(李兰兰)1, and Hong-Yi Fan(范洪义)2,
1 School of Electronic Engineering, Huainan Normal University, Huainan 232038, China
2 University of Science and Technology of China, Hefei 230031, China
Abstract  

We explore how a displaced chaotic light (DCL) behaves in an amplitude dissipation channel, and what is its time evolution formula of photon number distribution. With the use of the method of integration within ordered product product of operator (IWOP) and the new binomial theorem involving two-variable Hermite polynomials we obtain the evolution law of DCL in the channel.

Keywords:  displaced chaotic light      amplitude dissipation channel      time evolution formula      IWOP  
Received:  23 May 2020      Revised:  29 May 2020      Accepted manuscript online:  05 June 2020
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  63.20.-e (Phonons in crystal lattices)  
Corresponding Authors:  Corresponding author. E-mail: fhym@ustc.edu.cn   
About author: 
†Corresponding author. E-mail: fhym@ustc.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant No. 11775208) and Key Projects of Huainan Normal University (Grant No. 2019XJZD04).

Cite this article: 

Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义)† Damping of displaced chaotic light field in amplitude dissipation channel 2020 Chin. Phys. B 29 100302

[1]
Gilles L, Knight P L 1992 J. Mod. Opt. 39 1411 DOI: 10.1080/09500349214551471
[2]
Ren G, Du J M, Yu H J 2013 Int. J. Theor. Phys. 52 3564 DOI: 10.1007/s10773-013-1659-3
[3]
Meng X G, Wang Z, Fan H Y 2012 J.Opt. Soc. Am. B 29 1844 DOI: 10.1364/JOSAB.29.001844
[4]
Si K, Zang M, Jia H Y 2009 Chin. Phys. B 18 4887 DOI: 10.1088/1674-1056/18/11/045
[5]
Meier C, Tannor D J 1999 J. Chem. Phys. 111 3365 DOI: 10.1063/1.479669
[6]
Ashrafifi S M, Bazrafkan M R 2014 Chin. Phys. B 23 090303 DOI: 10.1088/1674-1056/23/9/090303
[7]
Zhu W, Huang Y, Kouri D J 1994 Chem. Phys. Lett. 217 73 DOI: 10.1016/0009-2614(93)E1345-H
[8]
Fan H Y, Hu L Y 2009 Chin. Phys. B 18 1061 DOI: 10.1088/1674-1056/18/3/037
[9]
Fan H Y, Zaidi H R 1987 Phys. Lett. A 124 303 DOI: 10.1016/0375-9601(87)90016-8
[10]
Fan H Y, Wang J S 2007 Commun. Theor. Phys. 47 431 DOI: 10.1088/0253-6102/47/3/010
[11]
Meng X G, Wang J S, Li H Q 2008 Chin. Phys. B 17 2973 DOI: 10.1088/1674-1056/17/8/035
[12]
Hu L Y, Fan H Y, Zhang Z M 2013 Chin. Phys. B 22 034202 DOI: 10.1088/1674-1056/22/3/034202
[13]
Yuan H C, Li H M, Xu X F 2013 Chin. Phys. B 22 060301 DOI: 10.1088/1674-1056/22/6/060301
[14]
Hu L Y, Fan H Y 2008 J. Mod. Opt. 55 2011 DOI: 10.1080/09500340801947629
[15]
Hu L Y, Fan H Y 2008 Commun. Theor. Phys. 50 965 DOI: 10.1088/0253-6102/50/4/35
[16]
Eriksson K E, Skagerstam B S 1981 Phys. Rev. D 24 2615 DOI: 10.1103/PhysRevD.24.2615
[17]
Xie C M, Fan H Y, Wan S L 2010 Chin. Phys. B 19 064207 DOI: 10.1088/1674-1056/19/6/064207
[18]
Wang J S, Meng X G, Liang B L 2010 Chin. Phys. B 19 014207 DOI: 10.1088/1674-1056/19/1/014207
[19]
Fan H Y, Zaidi H R, Klauder J R 1987 Phys. Rev. D 35 1831 DOI: 10.1103/PhysRevD.35.1831
[20]
Fan H Y, Tong G L 1989 Commun. Theor. Phys. 11 291 DOI: 10.1088/0253-6102/11/3/291
[21]
Chen J H, Fan H Y 2009 Chin. Phys. B 18 3714 DOI: 10.1088/1674-1056/18/9/018
[22]
Fan H Y, Fan Y, Song T Q 2002 Phys. Lett. A 305 222 DOI: 10.1016/S0375-9601(02)01453-6
[23]
Yuan H C, Li H M, Xu X F 2013 Chin. Phys. B 22 060301 DOI: 10.1088/1674-1056/22/6/060301
[24]
Fan H Y 2002 Phys. Rev. A 65 064102 DOI: 10.1103/PhysRevA.65.064102
[25]
Fan H Y 1992 Commun. Theor. Phys. 17 469 DOI: 10.1088/0253-6102/17/4/469
[26]
Fan H Y 1989 Commun. Theor. Phys. 12 219 DOI: 10.1088/0253-6102/12/2/219
[27]
Meng X G, Liu J M, Wang J S, Fan H Y 2019 Eur. Phys. J. D 73 32 DOI: 10.1140/epjd/e2018-90224-6
[28]
Mamedov B A, Tapramaz R, Merdan Z 2005 Appl. Math. Comput. 168 333
[29]
Weiss G H, Maradudin A A 1962 J. Math. Phys. 3 771 DOI: 10.1063/1.1724280
[30]
Newman M, So W, Thompson R C 1989 Linear Multilinear A 24 301
[31]
Kolsrud M 1993 J. Math. Phys. 34 270 DOI: 10.1063/1.530381
[32]
Fan H Y, Lou S Y 2015 Chin. Phys. B 24 070305 DOI: 10.1088/1674-1056/24/7/070305
[33]
Fan H Y, He R, Da C, Liang Z F 2013 Chin. Phys. B 22 080301 DOI: 10.1088/1674-1056/22/8/080301
[34]
Rassias T M, Srivastava H M 1993 J. Math. Anal. Appl. 174 528 DOI: 10.1006/jmaa.1993.1137
[1] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[2] Evolution of quantum states via Weyl expansion in dissipative channel
Li-Yun Hu(胡利云), Zhi-Ming Rao(饶志明), Qing-Qiang Kuang(况庆强). Chin. Phys. B, 2019, 28(8): 084206.
[3] A new two-mode thermo-and squeezing-mixed optical field
Jun Zhou(周军), Hong-yi Fan(范洪义), Jun Song(宋军). Chin. Phys. B, 2017, 26(7): 070301.
[4] New useful special function in quantum optics theory
Feng Chen(陈锋), Hong-Yi Fan(范洪义). Chin. Phys. B, 2016, 25(8): 080303.
[5] Time evolution of negative binomial optical field in a diffusion channel
Liu Tang-Kun (刘堂昆), Wu Pan-Pan (吴盼盼), Shan Chuan-Jia (单传家), Liu Ji-Bing (刘继兵), Fan Hong-Yi (范洪义). Chin. Phys. B, 2015, 24(9): 090302.
[6] From fractional Fourier transformation to quantum mechanical fractional squeezing transformation
Lv Cui-Hong (吕翠红), Fan Hong-Yi (范洪义), Li Dong-Wei (李东韡). Chin. Phys. B, 2015, 24(2): 020301.
[7] A new kind of special function and its application
Fan Hong-Yi (范洪义), Wan Zhi-Long (万志龙), Wu Ze (吴泽), Zhang Peng-Fei (张鹏飞). Chin. Phys. B, 2015, 24(10): 100302.
[8] New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states
Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2014, 23(8): 080301.
[9] Master equation describing the diffusion process for a coherent state
Liu Tang-Kun (刘堂昆), Shan Chuan-Jia (单传家), Liu Ji-Bing (刘继兵), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030303.
[10] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[11] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[12] A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation
Xie Chuan-Mei(谢传梅), Fan Hong-Yi(范洪义), and Wan Shao-Long(完绍龙). Chin. Phys. B, 2010, 19(6): 064207.
[13] Radon transforms of the Wigner operator on hyperplanes
Chen Jun-Hua(陈俊华) and Fan Hong-Yi(范洪义). Chin. Phys. B, 2009, 18(9): 3714-3718.
[14] New two-mode intermediate momentum-coordinate representation with quantum entanglement and its application
Xu Shi-Min(徐世民), Xu Xing-Lei(徐兴磊), Li Hong-Qi(李洪奇), and Wang Ji-Suo(王继锁). Chin. Phys. B, 2009, 18(6): 2129-2136.
[15] Normal ordering and antinormal ordering of the operator (fQ+gP)n and some of their applications
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙). Chin. Phys. B, 2009, 18(4): 1534-1541.
No Suggested Reading articles found!