|
|
Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3 |
Zhenyi Zheng(郑臻益)1,2,3, Yue Zhang(张悦)1, Daoqian Zhu(朱道乾)1, Kun Zhang(张昆)1, Xueqiang Feng(冯学强)1, Yu He(何宇)1, Lei Chen(陈磊)1, Zhizhong Zhang(张志仲)1,2, Dijun Liu(刘迪军)2, Youguang Zhang(张有光)1,2, Pedram Khalili Amiri3, Weisheng Zhao(赵巍胜)1 |
1 Fert Beijing Research Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100191, China; 2 School of Electronics and Information Engineering, Beihang University, Beijing 100191, China; 3 Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, USA |
|
|
Abstract Spin-orbit torque (SOT) effect is considered as an efficient way to switch the magnetization and can inspire various high-performance spintronic devices. Recently, topological insulators (TIs) have gained extensive attention, as they are demonstrated to maintain a large effective spin Hall angle (θSHeff), even at room temperature. However, molecular beam epitaxy (MBE), as a precise deposition method, is required to guarantee favorable surface states of TIs, which hinders the prospect of TIs towards industrial application. In this paper, we demonstrate that Bi2Te3 films grown by magnetron sputtering can provide a notable SOT effect in the heterostructure with perpendicular magnetic anisotropy CoTb ferrimagnetic alloy. By harmonic Hall measurement, a high SOT efficiency (8.7±0.9 Oe/(109 A/m2)) and a large θSHeff (3.3±0.3) are obtained at room temperature. Besides, we also observe an ultra-low critical switching current density (9.7×109 A/m2). Moreover, the low-power characteristic of the sputtered Bi2Te3 film is investigated by drawing a comparison with different sputtered SOT sources. Our work may provide an alternative to leverage chalcogenides as a realistic and efficient SOT source in future spintronic devices.
|
Received: 02 April 2020
Revised: 13 May 2020
Accepted manuscript online:
|
PACS:
|
85.70.-w
|
(Magnetic devices)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971024 and 51901008), Young Elite Scientist Sponsorship Program by CAST (Grant No. 2017QNRC001), the International Mobility Project (Grant No. B16001), and National Key Technology Program of China (Grant No. 2017ZX01032101). P.K.A. acknowledges support by a grant from the National Science Foundation, Division of Electrical, Communications and Cyber Systems (NSF ECCS-1853879). |
Corresponding Authors:
Yue Zhang, Weisheng Zhao
E-mail: yz@buaa.edu.cn;weisheng.zhao@buaa.edu.cn
|
Cite this article:
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜) Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3 2020 Chin. Phys. B 29 078505
|
[1] |
Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
|
[2] |
Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L and Jungwirth T 2016 Science 351 587
|
[3] |
Chen X, Zhou X, Cheng R, Song C, Zhang J, Wu Y, Ba Y, Li H, Sun Y, You Y, Zhao Y and Pan F 2019 Nat. Mater. 18 931
|
[4] |
Yang T, Kimura T and Otani Y 2008 Nat. Phys. 4 851
|
[5] |
Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
|
[6] |
Miron I M, Garello K, Gaudin G, Zermatten P G, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
|
[7] |
Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
|
[8] |
Zheng Z, Zhang Y, Feng X, Zhang K, Nan J, Zhang Z, Wang G, Wang J, Lei N, Liu D, Zhang Y G and Zhao W S 2019 Phys. Rev. Appl. 12 044032
|
[9] |
Sato N, Xue F, White R M, Bi C and Wang S X 2018 Nat. Electron. 1 508
|
[10] |
Zhang Z, Zhu Y, Zhang Y, Zhang K, Nan J, Zheng Z, Zhang Y G and Zhao W S 2019 IEEE Electron. Device. Lett. 40 1984
|
[11] |
Zhang K, Zhang Y, Zhang Z, Zheng Z, Wang G, Zhang Y G, Liu Q, Yan S and Zhao W S 2019 Adv. Electron. Mater. 5 1800812
|
[12] |
Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J P, Fert A and Zhao W S 2018 Nat. Electron. 1 582
|
[13] |
Zheng C, Chen H, Zhang X, Zhang Z and Liu Y 2019 Chin. Phys. B 28 037503
|
[14] |
Feng X, Zhang Q, Zhang H, Zhang Y, Zhong R, Lu B, Cao J and Fan X 2019 Chin. Phys. B 28 107105
|
[15] |
Ramaswamy R, Qiu X, Dutta T, Pollard S D and Yang H 2016 Appl. Phys. Lett. 108 202406
|
[16] |
Finley J, Lee C H, Huang P Y and Liu L 2019 Adv. Mater. 31 1805361
|
[17] |
Li P, Liu T, Chang H, Kalitsov A, Zhang W, Csaba G, Li W, Richardson D, DeMann A, Rimal G, Dey H, Jiang J S, Porod W, Field S, Tang J, Marconi M C, Hoffmann A, Mryasov O and Wu M 2016 Nat. Commun. 7 12688
|
[18] |
Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 449
|
[19] |
Han J, Richardella A, Siddiqui S A, Finley J, Samarth N and Liu L 2017 Phys. Rev. Lett. 119 077702
|
[20] |
Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y and Yang H 2017 Nat. Commun. 8 1
|
[21] |
Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D and Zhao W S 2019 Phys. Rev. Appl. 12 034004
|
[22] |
Ohtomo A and Hwang H Y 2004 Nature 427 423
|
[23] |
Kageyama Y, Tazaki Y, An H, Harumoto T, Gao T, Shi J and Ando K 2019 Sci. Adv. 5 eaax4278
|
[24] |
An H, Ohno T, Kanno Y, Kageyama Y, Monnai Y, Maki H and Ando K 2018 Sci. Adv. 4 eaar2250
|
[25] |
Khang N H D, Ueda Y and Hai P N 2018 Nat. Mater. 17 808
|
[26] |
Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Sánchez J C R, Mangin S and Wang K L 2019 Adv. Mater. 31 1901681
|
[27] |
Mahendra D C, Grassi R, Chen J, Jamali M, Hickey D R, Zhang D, Zhao Z, Li H, Quarterman P, Lv Y, Li M, Manchon A, Mkhoyan K A, Low T and Wang J P 2018 Nat. Mater 17 800
|
[28] |
Zhang X, Cui B, Mao J, Yun J, Yan Z, Chang M, Zuo Y and Xi L 2020 Phys. Status Solidi-Rapid Res. Lett. 14 2000033
|
[29] |
Sourabh, B, Rajeev and K P 2014 AIP Adv. 4 017135
|
[30] |
Finley J and Liu L 2016 Phys. Rev. Appl. 6 054001
|
[31] |
Ueda K, Mann M, de Brouwer P W P, Bono D and Beach G S D 2017 Phys. Rev. B 96 064410
|
[32] |
Je S G, Sánchez J C R, Pham T H, Vallobra P, Malinowski G, Lacour D, Fache T, Cyrille M C, Kim D Y, Choe S B, Belmeguenai M, Hehn M, Mangin S, Gaudin G and Boulle O 2018 Appl. Phys. Lett. 112 062401
|
[33] |
Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404
|
[34] |
Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425
|
[35] |
Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587
|
[36] |
Zhang S, Su Y, Li X, Li R, Tian W, Hong J and You L 2019 Appl. Phys. Lett. 114 042401
|
[37] |
Cao J, Chen Y, Jin T, Gan W, Wang Y, Zheng Y, Lv H, Cardoso S, Wei D and Lew W S 2018 Sci. Rep. 8 1355
|
[38] |
Li X, Li P, Hou V D H, Mahendra D C, Nien C H, Xue F, Yi D, Bi C, Lee C M, Lin S J, Tsai W, Suzuki Y and Wang S X 2020 arXiv:2001.04054[cond-mat.mes-hall]
|
[39] |
Shi S, Liang S, Zhu Z, Cai K, Pollard S D, Wang Y, Wang J, Wang Q, He P, Yu J, Eda G, Liang G and Yang H 2019 Nat. Nanotechnol. 14 945
|
[40] |
Li P, Wu W, Wen Y, Zhang C, Zhang J, Zhang S, Yu Z, Yang S A, Manchon A and Zhang X 2018 Nat. Commun. 9 3990
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|