Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 113101    DOI: 10.1088/1674-1056/aba277
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes

Ming-Lang Wang(王明郎) and Chuan-Kui Wang(王传奎)
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  

Designing tunable molecular devices with different charge carriers in single-molecule junctions is crucial to the next-generation electronic technology. Recently, it has been demonstrated that the type of charge carriers depends on and can be tuned by controlling the molecular length and the number of interfacial covalent bonds. In this study, we show that the type of charge carriers can also be tuned by controlling the material and shape of electrodes. N-heterocyclic carbenes (NHCs) have attracted attention because of their ability to form strong, substitutional inert bonds in a variety of metals. Also, NHCs are more stable than the widely used thiol group. Therefore, we use electrodes to tune the type of charge carriers in a series of NHCs with different side groups. The ab initio calculations based on non-equilibrium Green’s formalism combined with density functional theory show that the dominant charge carrier switches from electrons to holes when gold electrodes are changed into platinum ones. The nature of the charge carriers can be identified by variations in the transport spectra at the Fermi level (EF), which are caused by the side groups. The projections of transport spectra onto the central molecules further validate our inferences. In addition, the transmission coefficient at EF is found to be dependent on the atomic interface structure. In particular, for the NHC without methyl or ethyl side groups, connecting a protruding atom on the electrode surface significantly enhances the transportability of both electrode materials. Overall, this study presents an effective approach to modifying transport properties, which has potential applications in designing functional molecular devices based on NHCs.

Keywords:  molecular electronics      charge carriers      side groups      non-equilibrium Green’s function  
Received:  25 May 2020      Revised:  21 June 2020      Accepted manuscript online:  03 July 2020
Fund: the National Natural Science Foundation of China (Grants Nos. 11874242 and 21933002) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019PA022).
Corresponding Authors:  Corresponding author. E-mail: wangminglang@sdnu.edu.cn   

Cite this article: 

Ming-Lang Wang(王明郎) and Chuan-Kui Wang(王传奎) Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes 2020 Chin. Phys. B 29 113101

Fig. 1.  

(a) Molecular structure of NHC with substitutional side group R, which includes H, methyl, and ethyl groups. (b) Schematic diagram of molecular transport junction, with central molecular backbone being NHC molecule that is attached to atop position (down panel) and adatom position (up panel) on Au (111) surface.

Fig. 2.  

Frontier molecular orbitals of isolated NHC molecule with side group H (right), and variation in energy levels when side group is changed from H to methyl and ethyl (left).

Fig. 3.  

Equilibrium transmission spectra at different contact positions on Au electrode surface: (a) atop position, (b) adatom position, with insets showing amplified transmission coefficient at EF, and blue, red, and pink curves indicating H, methyl, and ethyl side groups at R position of NHC molecule, respectively.

Fig. 4.  

Transmission spectra projected onto frontier molecular orbitals of NHC molecule, which are located at atop position on Au electrode surface with (a) H, (b) methyl, and (c) ethyl side groups.

Fig. 5.  

Equilibrium transmission spectra at different contact positions on Pt electrode surface: (a) atop position and (b) adatom position. Inset in panel (a) shows amplified transmission coefficient at EF. Blue and pink curves refer to H and ethyl side groups at the R position of the NHC molecule, respectively.

Fig. 6.  

Transmission spectra projected onto frontier molecular orbitals of NHC molecule, which is located at atop position on Pt electrode surface with (a) H and (b) ethyl (b) side groups.

[1]
Xiang D, Wang X, Jia C, Lee T, Guo X 2016 Chem. Rev. 116 4318 DOI: 10.1021/acs.chemrev.5b00680
[2]
Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D, Tian H, Ratner M A, Xu H, Nitzan A, Guo X 2016 Science 352 1443 DOI: 10.1126/science.aaf6298
[3]
Mu Y, Zhao J, Chen L, Huang H, Wang M, Hu G, Wang C, Zhang G 2020 Org. Electron. 81 105665 DOI: 10.1016/j.orgel.2020.105665
[4]
Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302 in Chinese DOI: 10.7498/aps.68.20191154
[5]
Yan R, Wu Z W, Xie W Z, Li D, Wang Y 2018 Acta Phys. Sin. 67 097301 in Chinese DOI: 10.7498/aps.67.20172221
[6]
Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502 in Chinese DOI: 10.7498/aps.68.20190693
[7]
Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503 DOI: 10.1088/1674-1056/25/12/128503
[8]
He Z L, Bai J Y, Ye S J, Li L, Li C X 2018 Chin. Phys. Lett. 34 087301 DOI: 10.1088/0256-307X/34/8/087301
[9]
Li Y Q, Kan H J, Miao Y Y, Lei Y, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2020 Chin. Phys. B 29 017303 DOI: 10.1088/1674-1056/ab5d02
[10]
Zhang N, Lo W, Cai Z, Li L, Yu L 2017 Nano Lett. 17 308 DOI: 10.1021/acs.nanolett.6b04110
[11]
Lopes C S, Merces L, de Oliverira R F, de Camargo D H S, Bufon C C B 2020 Nanoscale 12 10001 DOI: 10.1039/C9NR10601D
[12]
Capozzi B, Xia J, Adak O, Dell E, Liu J Z, Taylor J C, Neaton J B, Campos L M, Venkataraman L 2015 Nat. Nanotech. 10 22 DOI: 10.1038/nnano.2014.279
[13]
Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T 2009 Nature 462 1039 DOI: 10.1038/nature08639
[14]
Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809 DOI: 10.1021/nl401067x
[15]
Sun H, Liu X, Su Y, Deng B, Peng H, Decurtins S, Sanvito S, Liu S, Hou S, Liao J 2019 Nanoscale 11 13117 DOI: 10.1039/C9NR01551E
[16]
Zhan X, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R, Marder S R 2011 Adv. Mater. 23 268 DOI: 10.1002/adma.v23.2
[17]
Dell E J, Capozzi B, Xia J, Venkataraman L, Campos L M 2015 Nat. Chem. 7 209 DOI: 10.1038/nchem.2160
[18]
Low J Z, Capozzi B, Cui J, Wei S, Venkataraman L, Campos L M 2017 Chem. Sci. 8 3254 DOI: 10.1039/C6SC05283E
[19]
Jiang Z, Wang H, Wang Y, Sanvito S, Hou S 2017 J. Phys. Chem. C 121 27344 DOI: 10.1021/acs.jpcc.7b09847
[20]
Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002 DOI: 10.1038/natrevmats.2016.2
[21]
Arduengo A J III Harlow R L, Kline M 1991 J. Am. Chem. Soc. 113 361 DOI: 10.1021/ja00001a054
[22]
Sprick R S, Hoyos M, Morrison J J, Grace I M, Lambert C, Navarro O, Turner M L 2013 J. Mater. Chem. C 1 3327 DOI: 10.1039/c3tc30368c
[23]
An Y, Yu J, Han Y 2019 Chin. J. Chem. 37 76 DOI: 10.1002/cjoc.v37.1
[24]
Smith C A, Narouz M R, Lummis P A, Singh I, Nazemi A, Li C, Crudden C M 2019 Chem. Rev. 119 4986 DOI: 10.1021/acs.chemrev.8b00514
[25]
Thanneeru S, Ayers K M, Anuganti M, Zhang L, Kumar C V, Ung G, He J 2020 J. Mater. Chem. C 8 2280 DOI: 10.1039/C9TC04776J
[26]
Yang G, Amro N A, Starkewolfe Z B, Liu G Y 2004 Langmuir 20 3995 DOI: 10.1021/la0499160
[27]
Srisombat L, Jamison A C, Lee T R 2011 Colloids Surf. A 390 1 DOI: 10.1016/j.colsurfa.2011.09.020
[28]
Vericat C, Vela M E, Benitez G, Carro P, Salvarezza R C 2010 Chem. Rev. 39 1805 DOI: 10.1021/nl401067x
[29]
Médard G, Papageorgiou A C 2019 Nat. Chem. 11 17 DOI: 10.1038/s41557-018-0168-7
[30]
Zhukhovitskiy A V, Macleod M J, Johnson J A 2015 Chem. Rev. 115 11503 DOI: 10.1021/acs.chemrev.5b00220
[31]
Han G, Ghosh P, Rotello V M 2007 Nanomedicine 2 113 DOI: 10.2217/17435889.2.1.113
[32]
Lv A, Freitag M, Chepiga K M, Schäfer A H, Glorius F, Chi L 2018 Angew. Chem. Int. Ed. 57 4792 DOI: 10.1002/anie.201713415
[33]
Baquero E A, Tricard S, Coppel Y 2018 Dalton Trans. 47 4093 DOI: 10.1039/C8DT00240A
[34]
Ernst J B, Muratsugu S, Wang F, Rakers L, Lecante P, Philippot K, Chaudret B, Glorius F 2018 Chem. Commun. 54 7070 DOI: 10.1039/C8CC02833H
[35]
Dejesus J F, Trujillo M J, Camden J P, Jenkins D M 2018 J. Am. Chem. Soc. 140 1247 DOI: 10.1021/jacs.7b12779
[36]
Bakker A, Timmer A, Kolodzeiski E, Freitag M, Gao H Y, Mönig H, Amirjalayer S, Glorius F, Fuchs H 2018 J. Am. Chem. Soc. 140 11889 DOI: 10.1021/jacs.8b06180
[37]
Larrea C R, Baddeley C J, Narouz M R, Mosey N J, Horton J H, Crudden C M 2017 ChemPhysChem 18 3536 DOI: 10.1002/cphc.v18.24
[38]
Rodriguez-Castillo M, Lugo-Preciado G, Laurencin D, Tielens F, van der Lee A, Clement S, Guari Y, Lopez-de-Luzuriaga J M, Monge M, Remacle F, Richeter S 2016 Chem. Eur. J. 22 10446 DOI: 10.1002/chem.201601253
[39]
Kim H K, Kyla A S, Winget P, Li H, Wyss C M, Jordan A J, Larrain F A, Sadighi J P, Fuentes-Hernandez C, Kippelen B, Brédas J, Barlow S, Marder S R 2017 Chem. Mater. 29 3403 DOI: 10.1021/acs.chemmater.6b04213
[40]
Foti G, Vázquez H 2016 Nanotechnology 27 125702 DOI: 10.1088/0957-4484/27/12/125702
[41]
Doud E A, Inkpen M S, Lovat G, Montes E, Paley D W, Steigerwald M L, Vázquez H, Venkataraman L, Roy X 2018 J. Am. Chem. Soc. 140 8944 DOI: 10.1021/jacs.8b05184
[42]
Meir Y, Wingreen N S 1992 Phys. Rev. Lett. 68 2512 DOI: 10.1103/PhysRevLett.68.2512
[43]
Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864 DOI: 10.1103/PhysRev.136.B864
[44]
Xue Y, Datta S, Ratner M A 2002 Chem. Phys. 281 151 DOI: 10.1016/S0301-0104(02)00446-9
[45]
Brandbyge M, Mozos J, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401 DOI: 10.1103/PhysRevB.65.165401
[46]
Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens Matter 14 2745 DOI: 10.1088/0953-8984/14/11/302
[47]
Perdew J. P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 DOI: 10.1103/PhysRevLett.77.3865
[48]
Zhang G, Xie Z, Song Y, Wei M, Hu G, Wang C 2017 Org. Electron. 48 29 DOI: 10.1016/j.orgel.2017.05.032
[49]
Rocha A R, García-Suárez V M, Bailey S W, Lambert C J, Ferrer J, Sanvito S 2005 Nat. Mater. 4 335 DOI: 10.1038/nmat1349
[50]
Miao Y, Qiu S, Zhang G, Ren J, Wang C, Hu G 2018 Phys. Rev. B 98 235415 DOI: 10.1103/PhysRevB.98.235415
[51]
Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397 DOI: 10.1016/j.physe.2018.05.041
[52]
Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1 DOI: 10.1016/j.physe.2018.12.032
[53]
Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508 DOI: 10.1088/1674-1056/26/9/098508
[54]
Liu R, Bi J, Xie Z, Yin K, Wang D, Zhang G, Xiang D, Wang C, Li Z 2018 Phys. Rev. Appl. 9 054023 DOI: 10.1103/PhysRevApplied.9.054023
[55]
Foti G, Vázquez H 2016 Nanotechol. 27 125702 DOI: 10.1088/0957-4484/27/12/125702
[56]
Zeng Y, Zhang T, Narouz M R, Crudden C M, McBreen P H 2018 Chem. Commun. 54 12527 DOI: 10.1039/C8CC06894A
[1] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[2] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[3] Influence of external voltage on electronic transport properties of molecular junctions: the nonlinear transport behaviour 
Li Zong-Liang (李宗良), Wang Chuan-Kui (王传奎), Luo Yi (罗毅), Xue Qi-Kun (薛其坤). Chin. Phys. B, 2005, 14(5): 1036-1040.
No Suggested Reading articles found!