|
|
Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes |
Ming-Lang Wang(王明郎)† and Chuan-Kui Wang(王传奎) |
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract Designing tunable molecular devices with different charge carriers in single-molecule junctions is crucial to the next-generation electronic technology. Recently, it has been demonstrated that the type of charge carriers depends on and can be tuned by controlling the molecular length and the number of interfacial covalent bonds. In this study, we show that the type of charge carriers can also be tuned by controlling the material and shape of electrodes. N-heterocyclic carbenes (NHCs) have attracted attention because of their ability to form strong, substitutional inert bonds in a variety of metals. Also, NHCs are more stable than the widely used thiol group. Therefore, we use electrodes to tune the type of charge carriers in a series of NHCs with different side groups. The ab initio calculations based on non-equilibrium Green’s formalism combined with density functional theory show that the dominant charge carrier switches from electrons to holes when gold electrodes are changed into platinum ones. The nature of the charge carriers can be identified by variations in the transport spectra at the Fermi level (EF), which are caused by the side groups. The projections of transport spectra onto the central molecules further validate our inferences. In addition, the transmission coefficient at EF is found to be dependent on the atomic interface structure. In particular, for the NHC without methyl or ethyl side groups, connecting a protruding atom on the electrode surface significantly enhances the transportability of both electrode materials. Overall, this study presents an effective approach to modifying transport properties, which has potential applications in designing functional molecular devices based on NHCs.
|
Received: 25 May 2020
Revised: 21 June 2020
Accepted manuscript online: 03 July 2020
|
Fund: the National Natural Science Foundation of China (Grants Nos. 11874242 and 21933002) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019PA022). |
Corresponding Authors:
†Corresponding author. E-mail: wangminglang@sdnu.edu.cn
|
Cite this article:
Ming-Lang Wang(王明郎) and Chuan-Kui Wang(王传奎) Tuning the type of charge carriers in N-heterocyclic carbene-based molecular junctions through electrodes 2020 Chin. Phys. B 29 113101
|
[1] |
|
[2] |
Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D, Tian H, Ratner M A, Xu H, Nitzan A, Guo X 2016 Science 352 1443 DOI: 10.1126/science.aaf6298
|
[3] |
|
[4] |
|
[5] |
|
[6] |
Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F, Li Z L 2019 Acta Phys. Sin. 68 178502 in Chinese DOI: 10.7498/aps.68.20190693
|
[7] |
|
[8] |
|
[9] |
Li Y Q, Kan H J, Miao Y Y, Lei Y, Qiu S, Zhang G P, Ren J F, Wang C K, Hu G C 2020 Chin. Phys. B 29 017303 DOI: 10.1088/1674-1056/ab5d02
|
[10] |
|
[11] |
Lopes C S, Merces L, de Oliverira R F, de Camargo D H S, Bufon C C B 2020 Nanoscale 12 10001 DOI: 10.1039/C9NR10601D
|
[12] |
Capozzi B, Xia J, Adak O, Dell E, Liu J Z, Taylor J C, Neaton J B, Campos L M, Venkataraman L 2015 Nat. Nanotech. 10 22 DOI: 10.1038/nnano.2014.279
|
[13] |
Song H, Kim Y, Jang Y H, Jeong H, Reed M A, Lee T 2009 Nature 462 1039 DOI: 10.1038/nature08639
|
[14] |
Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809 DOI: 10.1021/nl401067x
|
[15] |
Sun H, Liu X, Su Y, Deng B, Peng H, Decurtins S, Sanvito S, Liu S, Hou S, Liao J 2019 Nanoscale 11 13117 DOI: 10.1039/C9NR01551E
|
[16] |
Zhan X, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R, Marder S R 2011 Adv. Mater. 23 268 DOI: 10.1002/adma.v23.2
|
[17] |
Dell E J, Capozzi B, Xia J, Venkataraman L, Campos L M 2015 Nat. Chem. 7 209 DOI: 10.1038/nchem.2160
|
[18] |
Low J Z, Capozzi B, Cui J, Wei S, Venkataraman L, Campos L M 2017 Chem. Sci. 8 3254 DOI: 10.1039/C6SC05283E
|
[19] |
|
[20] |
|
[21] |
|
[22] |
Sprick R S, Hoyos M, Morrison J J, Grace I M, Lambert C, Navarro O, Turner M L 2013 J. Mater. Chem. C 1 3327 DOI: 10.1039/c3tc30368c
|
[23] |
|
[24] |
|
[25] |
Thanneeru S, Ayers K M, Anuganti M, Zhang L, Kumar C V, Ung G, He J 2020 J. Mater. Chem. C 8 2280 DOI: 10.1039/C9TC04776J
|
[26] |
Yang G, Amro N A, Starkewolfe Z B, Liu G Y 2004 Langmuir 20 3995 DOI: 10.1021/la0499160
|
[27] |
|
[28] |
Vericat C, Vela M E, Benitez G, Carro P, Salvarezza R C 2010 Chem. Rev. 39 1805 DOI: 10.1021/nl401067x
|
[29] |
|
[30] |
|
[31] |
|
[32] |
Lv A, Freitag M, Chepiga K M, Schäfer A H, Glorius F, Chi L 2018 Angew. Chem. Int. Ed. 57 4792 DOI: 10.1002/anie.201713415
|
[33] |
|
[34] |
Ernst J B, Muratsugu S, Wang F, Rakers L, Lecante P, Philippot K, Chaudret B, Glorius F 2018 Chem. Commun. 54 7070 DOI: 10.1039/C8CC02833H
|
[35] |
Dejesus J F, Trujillo M J, Camden J P, Jenkins D M 2018 J. Am. Chem. Soc. 140 1247 DOI: 10.1021/jacs.7b12779
|
[36] |
Bakker A, Timmer A, Kolodzeiski E, Freitag M, Gao H Y, Mönig H, Amirjalayer S, Glorius F, Fuchs H 2018 J. Am. Chem. Soc. 140 11889 DOI: 10.1021/jacs.8b06180
|
[37] |
Larrea C R, Baddeley C J, Narouz M R, Mosey N J, Horton J H, Crudden C M 2017 ChemPhysChem 18 3536 DOI: 10.1002/cphc.v18.24
|
[38] |
Rodriguez-Castillo M, Lugo-Preciado G, Laurencin D, Tielens F, van der Lee A, Clement S, Guari Y, Lopez-de-Luzuriaga J M, Monge M, Remacle F, Richeter S 2016 Chem. Eur. J. 22 10446 DOI: 10.1002/chem.201601253
|
[39] |
Kim H K, Kyla A S, Winget P, Li H, Wyss C M, Jordan A J, Larrain F A, Sadighi J P, Fuentes-Hernandez C, Kippelen B, Brédas J, Barlow S, Marder S R 2017 Chem. Mater. 29 3403 DOI: 10.1021/acs.chemmater.6b04213
|
[40] |
|
[41] |
Doud E A, Inkpen M S, Lovat G, Montes E, Paley D W, Steigerwald M L, Vázquez H, Venkataraman L, Roy X 2018 J. Am. Chem. Soc. 140 8944 DOI: 10.1021/jacs.8b05184
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens Matter 14 2745 DOI: 10.1088/0953-8984/14/11/302
|
[47] |
|
[48] |
|
[49] |
Rocha A R, García-Suárez V M, Bailey S W, Lambert C J, Ferrer J, Sanvito S 2005 Nat. Mater. 4 335 DOI: 10.1038/nmat1349
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
Zeng Y, Zhang T, Narouz M R, Crudden C M, McBreen P H 2018 Chem. Commun. 54 12527 DOI: 10.1039/C8CC06894A
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|