Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070303    DOI: 10.1088/1674-1056/ab90f6
GENERAL Prev   Next  

One-decoy state reference-frame-independent quantum key distribution

Xiang Li(李想)1,2, Hua-Wei Yuan(远华伟)1,2, Chun-Mei Zhang(张春梅)1,2, Qin Wang(王琴)1,2
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Broadband Wireless Communication and Sensor Network Technology, Key Laboratory of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Reference-frame-independent quantum key distribution (RFI-QKD) has been proven to be very useful and practical under realistic environment. Here, we present a scheme for one-decoy state RFI-QKD based on the work of Rusca et al. [Appl. Phys. Lett. 112, 171104 (2018)], and carry out investigation on its performance under realistic experimental conditions. Numerical simulation results show that the one-decoy state RFI-QKD can achieve comparable performance in terms of secret key rate and transmission distance as the two-decoy state correspondence under practical experimental conditions. On contrast, it does not need to prepare the vacuum state in the former case, substantially reducing the experimental complexity and random number consumptions. Therefore, our present proposal seems very promising in practical implementations of RFI-QKD.
Keywords:  quantum key distribution      RFI-QKD      one decoy state  
Received:  01 March 2020      Revised:  22 April 2020      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0306400 and 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 61590932, 11774180, and 61705110), and the Natural Science Foundation of Jiangsu Province for Leading-edge Technology Program, China (Grant No. BK20192001).
Corresponding Authors:  Qin Wang      E-mail:  qinw@njupt.edu.cn

Cite this article: 

Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴) One-decoy state reference-frame-independent quantum key distribution 2020 Chin. Phys. B 29 070303

[1] Bennett C H and Brassard G 1984 Proceddings of the IEEE International Conference on Computers, Systems and Signal Processing, 1999, Bangalore, India (IEEE, New York, 1984) p. 175
[2] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[3] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[4] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[5] Sasaki M, Fujiwara M, Ishizuka H, et al. 2011 Opt. Express 19 10387
[6] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739
[7] Tang Y L, Yin H L, Zhao Q, et al. 2016 Phys. Rev. X 6 011024
[8] Fr? hlich B, Lucamarini M, Dynes J F, et al. 2017 Optica 4 163
[9] Boaron A, Boso G, D Rusca, et al. 2018 Phys. Rev. Lett. 121 190502
[10] Wang S, He D Y, Yin Z Q, et al. 2019 Phys. Rev. X 9 021046
[11] Wang S, Chen W, Guo J F, et al. 2012 Opt. Lett. 37 1008
[12] Wang S, Yin Z Q, Chen W, He D Y, et al. 2015 Nat. Photon. 9 832
[13] Wang S, Chen W, Yin Z Q, He D Y, et al. 2018 Opt. Lett. 43 2030
[14] Laing A, Scarani V, Rarity J G and O'Brien J L 2010 Phys. Rev. A 82 012304
[15] Liang W Y, Wang S, Li H W, Yin Z Q, Chen W, Yao Y and Han Z F 2014 Sci. Rep. 4 3617
[16] Yin Z Q, Wang S, Chen W, Li H W, Guo G C and Han Z F 2014 Quantum Inf. Process. 13 1237
[17] Wang C, Sun S H, Ma X C, Tang G Z and Liang L M 2015 Phys. Rev. A 92 042319
[18] Zhang C M, Zhu J R and Wang Q 2017 Phys. Rev. A 95 032309
[19] Wang J P, Liu H w, Ma H Q and Sun S H 2019 Phys. Rev. A 99 032309
[20] Liu H W, Wang J P, Ma H Q and Sun S H 2019 Phys. Rev. A 12 034039
[21] Zhang P, Aungskunsiri K, Martín-López E, et al. 2014 Phys. Rev. Lett. 112 130501
[22] Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[23] Wang C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2017 Optica 4 1016
[24] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[25] Lütkenhaus N 2000 Phys. Rev. A 61 052304
[26] Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
[27] Lo H, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[28] Wang X B 2005 Phys. Rev. Lett. 94 230503
[29] Hayashi M and Nakayama R 2014 New J. Phys. 16 063009
[30] Rusca D, Boaron A, Grünenfelder F, Martin A and Zbinden H 2018 Appl. Phys. Lett. 112 171104
[31] Zhang C M, Zhu J R and Wang Q 2018 J. Phys. Commun. 2 055029
[32] Lim C C W, Curty M, Walenta N, et al. 2014 Phys. Rev. A 89 022307
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!