Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048901    DOI: 10.1088/1674-1056/ab7740
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Network correlation between investor's herding behavior and overconfidence behavior

Mao Zhang(张昴)1, Yi-Ming Wang(王一鸣)1,2
1 School of Economics, Peking University, Beijing 100871, China;
2 Key Laboratory of Mathematical Economics and Quantitative Finance, Peking University, Beijing 100871, China
Abstract  It is generally accepted that herding behavior and overconfidence behavior are unrelated or even mutually exclusive. However, these behaviors can both lead to some similar market anomalies, such as excessive trading volume and volatility in the stock market. Due to the limitation of traditional time series analysis, we try to study whether there exists network relevance between the investor's herding behavior and overconfidence behavior based on the complex network method. Since the investor's herding behavior is based on market trends and overconfidence behavior is based on past performance, we convert the time series data of market trends into a market network and the time series data of the investor's past judgments into an investor network. Then, we update these networks as new information arrives at the market and show the weighted in-degrees of the nodes in the market network and the investor network can represent the herding degree and the confidence degree of the investor, respectively. Using stock transaction data of Microsoft, US S&P 500 stock index, and China Hushen 300 stock index, we update the two networks and find that there exists a high similarity of network topological properties and a significant correlation of node parameter sequences between the market network and the investor network. Finally, we theoretically derive and conclude that the investor's herding degree and confidence degree are highly related to each other when there is a clear market trend.
Keywords:  complex network      time series      herding behavior      overconfidence behavior  
Received:  02 December 2019      Revised:  13 January 2020      Accepted manuscript online: 
PACS:  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  64.60.aq (Networks)  
Fund: Project supported by the Youth Program of the National Social Science Foundation of China (Grant No. 18CJY057).
Corresponding Authors:  Mao Zhang     E-mail:  zhangmao@pku.edu.cn

Cite this article: 

Mao Zhang(张昴), Yi-Ming Wang(王一鸣) Network correlation between investor's herding behavior and overconfidence behavior 2020 Chin. Phys. B 29 048901

[1] Donner R V, Small M, Donges J F, Marwan N, Zou Y, Xiang R X and Kurths J 2011 Int. J. Bifurcat. Chaos 21 1019
[2] Zhang J, Luo X and Small M 2006 Phys. Rev. E 73 016216
[3] Zhang J, Sun J F, Luo X D, Zhang K, Nakamura T and Small M 2008 Physica D 237 2856
[4] Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246
[5] Gao Z K and Jin N D 2009 Chaos 19 033137
[6] Eroglu D, Marwan N, Prasad S and Kurths J 2014 Nonlinear Proc. Geoph. 21 1085
[7] Xu X K, Zhang J and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601
[8] Lacasa L, Luque B, Ballesteros F, Luque J and Nuño J C 2008 Proc. Natl. Acad. Sci. USA 105 4972
[9] Lacasa L, Luque B, Luque J and Nuno J C 2009 Europhys. Lett. 86 30001
[10] Luque B, Lacasa L, Ballesteros F J and Luque J 2009 Phys. Rev. E 80 046103
[11] Luque B, Lacasa L, Ballesteros F J and Robledo A 2012 Chaos 22 013109
[12] Yu L 2013 Physica A 392 3374
[13] Zhuang E Y, Small M and Feng G 2014 Physica A 410 483
[14] Shirazi A H, Jafari G R, Davoudi J, Peinke J, Tabar M R R and Sahimi M 2009 J. Stat. MechTheory E 7 P07046
[15] Campanharo A S L O, Sirer M I, Malmgren R D, Ramos F M and Amaral L A N 2011 Plos One 6 e23378
[16] Zhao Y, Weng T F and Ye S K 2014 Phys. Rev. E 90 012804
[17] Yang Y and Yang H 2008 Physica A 387 1381
[18] Yue Y, Wang J, Yang H and Mang J S 2009 Physica A 388 4431
[19] Pang M B and Huang Y M 2018 Chin. Phys. B 27 118902
[20] Chen D, Shi D D and Pan G J 2019 Acta Phys. Sin. 68 118901 (in Chinese)
[21] Wu L R, Li J J and Qi J Y 2019 Acta Phys. Sin. 68 078901 (in Chinese)
[22] Wang N, Li D and Wang Q 2012 Physica A 391 6543
[23] Sias R W 2004 Rev. Financ. Stud. 17 165
[24] Barber B, Odean T and Zhu N 2009 Rev. Financ. Stud. 22 151
[25] Gontis V, Havlin S, Kononovicius A, Podobnik B and Stanley H E 2016 Physica A 462 1091
[26] Kremer S and Nautz D 2013 J. Bank. Financ. 37 1676
[27] Galariotis E C, Rong W and Spyrou S I 2015 J. Bank. Financ. 50 589
[28] Chiang T C and Zheng D 2010 J. Bank. Financ. 34 1911
[29] Bikhchandani S and Sharma S 2000 IMF Staff Papers 47 279
[30] Gervais S and Odean T 2001 Rev. Financ. Stud. 14 1
[31] Park A and Sabourian H 2011 Econometrica 79 973
[32] Blasco N, Corredor P and Ferreruela S 2012 Quantum Finance 12 311
[33] Hoelzl E and Rustichini A 2005 Econ. J. 115 305
[34] Benoȋt J P and Dubra J 2011 Econometrica 79 1591
[35] Barber B and Odean T 2001 Quart. J. Econ. 116 261
[36] Chuang W I and Susmel R 2011 J. Bank. Financ. 35 1626
[37] Odean T 1998 J. Financ. 53 1887
[38] Daniel K, Hirshleifer D and Subrahmanyam A 1998 J. Financ. 53 1839
[39] Hirshleifer D, Subrahmanyam A and Titman S 1994 J. Financ. 49 1665
[40] Jegadeesh N and Kim W 2010 Rev. Financ. Stud. 23 901
[41] Tauchen G E and Pitts M 1983 Econometrica 51 485
[42] Lux T 1995 Econ. J. 105 881
[43] Yook S H, Jeong H, Barabási A L and Tu Y 2001 Phys. Rev. Lett. 86 5835
[44] Zheng B, Ren F, Trimper S and Zheng D F 2004 Physica A 343 653
[45] Avery C and Zemsky P 1998 Amer. Econ. Rev. 88 724
[46] Statman M, Thorley S and Vorkink K 2006 Rev. Financ. Stud. 19 1531
[47] Karpoff J M 1987 J. Financ. Quant. Anal. 22 109
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[15] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
No Suggested Reading articles found!