Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034207    DOI: 10.1088/1674-1056/ab683a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform

Jia Wang(王佳)1, Ai-Guo Sheng(盛爱国)1, Xin Huang(黄鑫)1, Rong-Yu Li(李荣玉)1, Guang-Qiang He(何广强)1,2,3
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Based on the nonlinear Schrödinger equation (NLSE) with damping, detuning, and driving terms describing the evolution of signals in a Kerr microresonator, we apply periodic nonlinear Fourier transform (NFT) to the study of signals during the generation of the Kerr optical frequency combs (OFCs). We find that the signals in different states, including the Turing pattern, the chaos, the single soliton state, and the multi-solitons state, can be distinguished according to different distributions of the eigenvalue spectrum. Specially, the eigenvalue spectrum of the single soliton pulse is composed of a pair of conjugate symmetric discrete eigenvalues and the quasi-continuous eigenvalue spectrum with eye-like structure. Moreover, we have successfully demonstrated that the number of discrete eigenvalue pairs in the eigenvalue spectrum corresponds to the number of solitons formed in a round-trip time inside the Kerr microresonator. This work shows that some characteristics of the time-domain signal can be well reflected in the nonlinear domain.
Keywords:  nonlinear Fourier transform      Kerr optical frequency combs      nonlinear signal processing  
Received:  24 September 2019      Revised:  20 November 2019      Accepted manuscript online: 
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475099 and 61922040), Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF201701), and the Key R&D Program of Guangdong Province, China (Grant No. 2018B030325002).
Corresponding Authors:  Guang-Qiang He     E-mail:  gqhe@sjtu.edu.cn

Cite this article: 

Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强) Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform 2020 Chin. Phys. B 29 034207

[1] Yousefi M I and Kschischang F R 2014 IEEE Trans. Inf. Theory 60 4312
[2] Agrawal G P 2007 Nonlinear Fiber Optics, 4th edn. (Academic Press)
[3] Prilepsky J E, Derevyanko S A, Blow K J, Gabitov I and Turitsyn1 S K 2014 Phys. Rev. Lett. 113 013901
[4] Yousefi M I and Kschischang F R 2014 IEEE Trans. Inf. Theory 60 4346
[5] Wang L N, Liu S Y, Li C Y and He G Q 2017 A Combination of Eigenvalue and Spectral Function Modulation in Nonlinear Frequency Division Multiplexing, OSA Nonlinear Optics Toptical Meeting (NLO), 17-21 July 2017, Waikoloa, Hawaii, USA
[6] Liu S Y, Wang L N, Li C Y and He G Q 2017 Spectral Function Modulation based on Nonlinear Fourier Transform, OSA Nonlinear Optics Toptical Meeting (NLO), 17-21 July 2017, Waikoloa, Hawaii, USA
[7] He G Q, Wang L N, Li C Y, Liu S Y and Hu W S 2017 Sci. Rep. 7 6058
[8] Son T Le, Aref V and Buelow H 2017 Nat. Photon. 11 570
[9] Son T Le and Buelow H 2017 IEEE J. Lightwave Technol. 35 3692
[10] Gui T, Lu C, Lau A P T and Wai P K A 2017 Opt. Express 25 20286
[11] Goossens J W, Yousefi M I, Jaouën Y and Hafermann H 2017 Opt. Express 25 26437
[12] Son T Le, Aref V and Buelow H 2018 IEEE J. Lightwave Technol. 36 1296
[13] Son T Le, Schuh K, Buchali F and Buelow H 2018 Optical Fiber Communication Conference paper W1G.6
[14] Yangzhang X, Aref V, Son T Le, Buelow H and Bayvel P 2018 arXiv:1806.10367v1
[15] Wang J, Zhao Y L, Huang X and He G Q 2019 ZTE Commun. 3 17
[16] Ryczkowski P, Närhi M, Billet C, Merolla J M, Genty G and Dudley J M 2018 Nat. Photon. 12 221
[17] Kippenberg T J, Gaeta A L, Lipson M and Gorodetsky M L 2018 Science 361 567
[18] Godey C, Balakireva I V, Coillet A and Chembo Y K 2014 Phys. Rev. A 89 063814
[19] Chembo Y K and Menyuk C R 2013 Phys. Rev. A 87 053852
[20] Lamont M R E, Okawachi Y and Gaeta A L 2013 Opt. Lett. 38 3478
[21] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon. 8 145
[22] Guo H, Karpov M, Lucas E, Kordts A, Pfeiffer M H P, Brasch V, Lihachev G, Lobanov V E, Gorodetsky M L and Kippenberg T J 2017 Nat. Phys. 13 94
[23] Wahls S and Poor H V 2015 IEEE Trans. Inf. Theory 61 6957
[24] Yousefi M I and Kschischang F R 2014 IEEE Trans. Inf. Theory 60 4329
[25] Agha I H, Okawachi Y and Gaeta A L 2009 Opt. Express 17 16209
[26] Turitsyn S K, Prilepsky J E, Son T Le, Wahls S, Frumin L L, Kamalian M and Derevyanko S K 2017 Optica 4 307
[27] Matsuda Y, Terauchi H and Maruta A 2014 OptoElectronics and Communication Conference 1016
[1] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[2] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[3] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[4] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[7] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[8] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[9] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
[10] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[11] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[12] Orientation-dependent depolarization of supercontinuum in BaF2 crystal
Zi-Xi Li(李子熙), Cheng Gong(龚成), Tian-Jiao Shao(邵天骄), Lin-Qiang Hua(华林强), Xue-Bin Bian(卞学滨), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 014212.
[13] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[14] Scanning the energy dissipation process of energetic materials based on excited state relaxation and vibration-vibration coupling
Wen-Yan Wang(王文岩), Ning Sui(隋宁), Li-Quan Zhang(张里荃), Ying-Hui Wang(王英惠), Lin Wang(王琳), Quan Wang(王权), Jiao Wang(王娇), Zhi-Hui Kang(康智慧), Yan-Qiang Yang(杨延强), Qiang Zhou(周强), Han-Zhuang Zhang(张汉壮). Chin. Phys. B, 2018, 27(10): 104205.
[15] Optical power limiting of ultrashort hyper-Gaussian pulses in cascade three-level system
Ji-Cai Liu(刘纪彩), Fen-Fen Guo(郭芬芬), Ya-Nan Zhao(赵亚男), Xing-Zhe Li(李兴哲). Chin. Phys. B, 2018, 27(10): 104209.
No Suggested Reading articles found!