Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037802    DOI: 10.1088/1674-1056/ab6551
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates

A E Ershov1,2, V S Gerasimov1,2, I L Isaev1, A P Gavrilyuk1,2, S V Karpov2,3,4
1 Institute of Computational Modeling SB RAS, 660036, Krasnoyarsk, Russia;
2 Siberian Federal University, Krasnoyarsk, 660041, Russia;
3 Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia;
4 Siberian State University of Science and Technology, Krasnoyarsk 660014, Russia
Abstract  We have studied the dynamic and static processes occurring in disordered multiparticle colloidal Ag aggregates with natural structure and affecting their plasmonic absorption spectra under pico- and nanosecond pulsed laser radiations, as well as the physical origin responsible for these processes. We have shown that depending on the duration of the laser pulse, the mechanisms of laser modification of such aggregates can be associated both with changes in the resonant properties of the particles due to their heating and melting (picosecond irradiation mode) and with the particle shifts in the resonant domains of the aggregates (nanosecond pulses) which depend on the wavelength, intensity, and polarization of the radiation. These mechanisms result in formation of a narrow dip in the plasmonic absorption spectrum of the aggregates near the laser radiation wavelength and affect the shape and position of the dip. The effect of polydispersity of nanoparticle aggregates on laser photochromic reaction has been studied.
Keywords:  nanoparticle      surface plasmon resonance      photochromic process      pulsed laser radiation  
Received:  19 September 2019      Revised:  12 December 2019      Accepted manuscript online: 
PACS:  78.67.Sc (Nanoaggregates; nanocomposites)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project funded by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (Grant 18-42-243023), the RF Ministry of Science and Higher Education, and the State Contract with Siberian Federal University for Scientific Research. A.E. thanks the grant of the President of Russian Federation (agreement 075-15-2019-676).
Corresponding Authors:  A E Ershov     E-mail:  aleksander.ershow@yahoo.com

Cite this article: 

A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates 2020 Chin. Phys. B 29 037802

[1] Schuck P J, Fromm D P, Sundaramurthy A, Kino G S and Moerner W E 2005 Phys. Rev. Lett. 94 017402
[2] Kühn S, Håkanson U, Rogobete L and Sandoghdar V 2006 Phys. Rev. Lett. 97 017402
[3] Carminati R, Greffet J J, Henkel C and Vigoureux J 2006 Opt. Comm. 261 368
[4] Rogobete L, Schniepp H, Sandoghdar V and Henkel C 2003 Opt. Lett. 28 1736
[5] Sun G and Khurgin J B 2011 Plasmonics and Plasmonic Metamaterials (Singapore: World Scientific) pp. 1-44
[6] Gavrilyuk A P and Karpov S V 2009 Appl. Phys. B 97 163
[7] Ershov A E, Gavrilyuk A P, Karpov S V and Semina P N 2014 Appl. Phys. B 115 547
[8] Ershov A E, Gerasimov V S, Gavrilyuk A P and Karpov S V 2017 Appl. Phys. B 123 182
[9] Shalaev V M 1996 Phys. Rep. 272 61
[10] Shalaev V M 2000 Nonlinear optics of random media: fractal composites and metal dielectric films (Berlin: Springer Verlag)
[11] Karpov S V and Slabko V V 2003 Optical and photophysical properties of fractal-structured metal sols (Novosibirsk: Russian Academy of Sciences, Siberian Branch)
[12] Pyatenko A, Wang H, Koshizaki N and Tsuji T 2013 Laser & Photonics Reviews 7 596
[13] Liu X, Chen H, Chen X, Alfadhl Y, Yu J and Wen D 2014 J. Appl. Phys. 115 094903
[14] Richardson H H, Carlson M T, Tandler P J, Hernandez P and Govorov A O 2009 Nano Lett. 9 1139
[15] Xu B, Song R G, Wang C and He W Z 2012 Materials Processing Technology II (Stafa-Zurich: Trans Tech Publications Ltd) pp. 1888-1891
[16] Karpov S V, Gerasimov V S, Isaev I L and Markel V A 2005 Phys. Rev. B 72 205425
[17] Karpov S V, Gerasimov V S, Isaev I L, Podavalova O P and Slabko V V 2007 Colloid J. 69 159
[18] Karpov S V, Bas'ko A L, Popov A K and Slabko V V 2000 Colloid J. 62 699
[19] Karpov S V, Popov A K, Rautian S G, Safonov V P, Slabko V V, Shalaev V M and Shtokman M I 1988 JETP Lett. 48 571
[20] Safonov V P, Shalaev V M, Markel V A, Danilova Y E, Lepeshkin N N, Kim W, Rautian S G and Armstrong R L 1998 Phys. Rev. Lett. 80 1102
[21] Karpov S V, Popov A K and Slabko V V 2003 Technical Phys. 48 749
[22] Karpov S V, Kodirov M K, Ryasiyanskiy A I and Slabko V V 2001 Quantum Electronics 31 904
[23] Ganeev R A, Ryasnyansky A I, Kamalov S R, Kodirov M K and Usmanov T J 2001 Physica D 34 1602
[24] Gavrilyuk A P and Karpov S V 2010 Appl. Phys. B 102 65
[25] Markel V A 1993 J. Mod. Opt. 40 2281
[26] Ershov A E, Isaev I L, Semina P N, Markel V A and Karpov S V 2012 Phys. Rev. B 85 045421
[27] Ershov A E, Gavrilyuk A P, Karpov S V and Semina P N 2015 Chin. Phys. B 24 47804
[28] Drachev V P, Perminov S V, Rautian S G, Safonov V P and Khaliullin E N 2002 J. Exp. Theor. Phys. 94 901
[29] Drachev V P, Perminov S V and Rautian S G 2007 Opt. Express 15 8639
[30] Perminov S V, Drachev V P and Rautian S G 2008 Opt. Lett. 33 2998
[31] Perminov S V and Drachev V P 2009 Opt. Spectrosc. 107 987
[32] Rautian S G 2004 Opt. Spectrosc. 97 416
[33] Gavrilyuk A P, Gerasimov V S, Ershov A E and Karpov S V 2018 Colloid and Polymer Science 296 1689
[34] Mahanty J and Ninham B W 1976 Dispersion Forces (London-New York-San Francisco: Academic Press)
[35] Bargeman D and van Voorst Vader F 1972 Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 37 45
[36] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer-Verlag)
[37] Berry M V and Percival I C 1986 Optica Acta 33 577
[38] Karpov S V, Gerasimov V S, Isaev I L and Obushchenko A V 2006 Colloid J. 68 441
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[6] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[9] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[10] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[11] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[12] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[13] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[14] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[15] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
No Suggested Reading articles found!