Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020301    DOI: 10.1088/1674-1056/ab5efd
GENERAL Prev   Next  

Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions

Shu-Jing Zhang(张淑静)1, Chen Xiao(肖晨)2, Chun Zhou(周淳)1, Xiang Wang(汪翔)1, Jian-Shu Yao(要建姝)3, Hai-Long Zhang(张海龙)1, Wan-Su Bao(鲍皖苏)1
1 Henan Key Laboratory of Quantum Information and Cryptography, PLA SSF IEU, Zhengzhou 450001, China;
2 PLA SSF IEU, Zhengzhou 450001, China;
3 Fujian Chengyi College of Jimei University, Xiamen 361021, China
Abstract  The effects of weather conditions are ubiquitous in practical wireless quantum communication links. Here in this work, the performances of atmospheric continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) under diverse weather conditions are analyzed quantitatively. According to the Mie scattering theory and atmospheric CV-MDI-QKD model, we numerically simulate the relationship between performance of CV-MDI-QKD and the rainy and foggy conditions, aiming to get close to the actual combat environment in the future. The results show that both rain and fog will degrade the performance of the CV-MDI-QKD protocol. Under the rainy condition, the larger the raindrop diameter, the more obvious the extinction effect is and the lower the secret key rate accordingly. In addition, we find that the secret key rate decreases with the increase of spot deflection distance and the fluctuation of deflection. Under the foggy condition, the results illustrate that the transmittance decreases with the increase of droplet radius or deflection distance, which eventually yields the decrease in the secret key rate. Besides, in both weather conditions, the increase of transmission distance also leads the secret key rate to deteriorate. Our work can provide a foundation for evaluating the performance evaluation and successfully implementing the atmospheric CV-MDI-QKD in the future field operation environment under different weather conditions.
Keywords:  weather conditions      atmospheric continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD)      performance  
Received:  17 August 2019      Revised:  13 November 2019      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61505261).
Corresponding Authors:  Hai-Long Zhang     E-mail:  zhhl049@126.com

Cite this article: 

Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏) Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions 2020 Chin. Phys. B 29 020301

[1] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[2] Ma X C, Herbst T, Scheidl T, et al. 2012 Nature 489 269
[3] Ma H X, Bao W S and Li H W 2016 Chin. Phys. B 25 080309
[4] Huang D, Fang J and Zeng G H 2013 Chin. Phys. Lett. 30 114209
[5] Guo Y, Su Y, Huang D, et al. 2019 Chin. Phys. B 28 010305
[6] Wang S Y, Huang P and Zeng G H 2018 New J. Phys. 20 083037
[7] Miao E L, Han Z F, Guo G C, et al. 2005 New J. Phys. 7 215
[8] Bourgoin J P, et al. 2013 New J. Phys. 15 023006
[9] Paterson C 2005 Phys. Rev. Lett. 94 153901
[10] Berman G P, Chumak A A, et al. 2006 Phys. Rev. A 74 013805
[11] Chumak O O, Baskov R A, et al. 2016 Phys. Rev. A 93 033821
[12] Semenov A, Töppel F, Vasylyev D Y, et al. 2012 Phys. Rev. A 85 013826
[13] Mori S, Marzano F S, et al. 2015 Appl. Opt. 54 6787
[14] Vasylyev D Y, Semenov A A, Vogel W, et al. 2017 Phys. Rev. A 96 043856
[15] Ma X C, et al. 2014 Phys. Rev. A 89 042335
[16] Zhang Y C, et al. 2014 Phys. Rev. A 90 052325
[17] Pirandola S, Ottaviani C, Spedalieri G, et al. 2015 Nat. Photon. 9 397
[18] Ma H X, Huang P, Bai D Y, Wang S Y, Bao W S and Zeng G H 2018 Phys. Rev. A 97 042329
[19] Hosseinidehaj N and Malaney R 2017 Quantum Inf. Comput. 17 361
[20] Hosseinidehaj N, Malaney R, et al. 2015 Phys. Rev. A 91 022304
[21] Wang Y, Fan C, Wei H, et al. 2015 Laser Beam Propagation and Applications Through the Atmosphere and Sea Water (Beijing: National Defense Industry Press)
[22] Wiscombe W, et al. 1980 Appl. Opt. 19 001505
[23] Hansen J E, Travis L D, et al. 1974 Space. Sci. Rev. 16 527
[24] Mie G 1908 Ann. Phys. 330 377
[25] James A Lock and Gérard Gouesbet 2009 J. Quantum Spectrosc. Radiat. Transfer 110 800
[26] Vasylyev D Y, Semenov A A, Vogel W, et al. 2012 Phys. Rev. Lett. 108 220501
[27] Guo H, Li Z Y, Peng X, et al. 2016 Quantum Cryptography (Beijing: National Defense Industry Press)
[28] Agrest M M and Maximov M S 1971 Theory of Incomplete Cylindrical Function and Their Application (Berlin: Springer)
[29] Uijlenhoet R, Cohard J M and Gosset M 2011 J. Hydrometeor. 12 955
[30] Wolf D, David A, et al. 2001 Radio Sci. 36 639
[31] Taylor G I, et al. 2007 Q. J. Roy. Meteor. Soc. 133 85
[32] Emmons G, Montgomery R B, et al. 2010 J. Meteor. 4 207
[33] Mitchell D L, et al. 2000 J. Atm. Sci. 57 1311
[34] Gebhart M, Leitgeb E, Muhammad S S, et al. 2005 Proceedings of SPIE–The International Society for Optical Engineering 5891
[1] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[2] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[3] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[4] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[5] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[6] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[7] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[8] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[9] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
[10] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[11] Detailed characterization of polycapillary focusing x-ray lenses by a charge-coupled device detector and a pinhole
Xue-Peng Sun(孙学鹏), Shang-Kun Shao(邵尚坤), Hui-Quan Li(李惠泉), Tian-Yu Yuan(袁天语), and Tian-Xi Sun(孙天希). Chin. Phys. B, 2022, 31(12): 120702.
[12] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[13] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[14] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[15] Influence of the coupled-dipoles on photosynthetic performance in a photosynthetic quantum heat engine
Ling-Fang Li(李玲芳) and Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2021, 30(4): 044215.
No Suggested Reading articles found!