On the modeling of synchronized flow in cellular automaton models
Jin Cheng-Jie (金诚杰)a, Wang Wei (王炜)a, Jiang Rui (姜锐)b
a School of Transportation, Southeast University of China, Nanjing 210096, China; b School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
Abstract In this paper, we further analyze our cellular automaton (CA) traffic flow model. By changing some parameters, the characteristics of our model can be significantly varied, ranging from the features of phase transitions to the number of traffic phases. We also review the other CA models based on Kerner’s three-phase traffic theory. By comparisons, we find that the core concepts for modeling the synchronized flow in these models are similar. Our model can be a good candidate for modeling the synchronized flow, since there is enough flexibility in our framework.
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB725400) and the Scientific Research Foundation of Graduate School of Southeast University, China.
Corresponding Authors:
Jin Cheng-Jie
E-mail: yitaikongtiao@gmail.com
About author: 45.70.Vn; 05.40.-a; 02.60.Cb
Cite this article:
Jin Cheng-Jie (金诚杰), Wang Wei (王炜), Jiang Rui (姜锐) On the modeling of synchronized flow in cellular automaton models 2014 Chin. Phys. B 23 024501
[1]
Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2]
Helbing D 2001 Rev. Mod. Phys. 73 1067
[3]
Kerner B S 2004 Physica A 333 379
[4]
Kerner B S and Rehborn H 1996 Phys. Rev. E 53 R1297
[5]
Kerner B S and Rehborn H 1996 Phys. Rev. E 53 R4275
[6]
Kerner B S and Rehborn H 1997 Phys. Rev. Lett. 79 4030
[7]
Kerner B S 1998 Phys. Rev. Lett. 81 3797
[8]
Treiber M and Helbing D 1999 J. Phys. A: Math. Gen. 32 L17
[9]
Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[10]
Helbing D and Treiber M 2002 Coop. Trans. Dyn. 1 1.2.1–2.2.4
[11]
Schönhof M and Helbing D 2007 Transp. Sci. 41 135
[12]
Schönhof M and Helbing D 2009 Transp. Res. B 43 784
[13]
Helbing D, Treiber M, Kesting A and Schönhof M 2009 Eur. Phys. J. B 69 583
[14]
Treiber M and Helbing D 2003 Phys. Rev. E 68 046119
[15]
Nishinari K, Treiber M and Helbing D 2003 Phys. Rev. E 68 067101
[16]
Treiber M, Kesting A and Helbing D 2006 Phys. Rev. E 74 016123
[17]
Treiber M, Kesting A and Helbing D 2010 Transp. Res. B 44 983
[18]
Kerner B S and Klenov S L 2008 J. Phys. A: Math. Theor. 41 215101
[19]
Kerner B S, Klenov S L and Schreckenberg M 2011 Phys. Rev. E 84 046110
[20]
Jin C J, Wang W, Jiang R, Zhang H M and Wang H 2013 Phys. Rev. E 87 012815
[21]
Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 L31
[22]
Kerner B S, Klenov S L and Wolf D E 2002 J. Phys. A: Math. Gen. 35 9971
[23]
Jin C J, Wang W, Jiang R and Gao K 2010 J. Stat. Mech. P03018
[24]
Jin C J, Wang W, Gao K and Jiang R 2011 Chin. Phys. B 20 064501
[25]
Jin C J and Wang W 2011 Physica A 390 4184
[26]
Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Eur. Phys. J. B 5 793
[27]
Li X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 066128
[28]
Kerner B S 2002 Phys. Rev. E 65 046138
[29]
Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A: Math. Gen. 33 L477
[30]
Knospe W, Santen L, Schadschneider A and Schreckenberg M 2004 Phys. Rev. E 70 016115
[31]
Jiang R and Wu Q S 2003 J. Phys. A: Math. Gen. 36 381
[32]
Jiang R and Wu Q S 2004 J. Phys. A: Math. Gen. 37 8197
[33]
Jiang R and Wu Q S 2005 Eur. Phys. J. B 46 581
[34]
Gao K, Jiang R, Hu S X, Wang B H and Wu Q S 2007 Phys. Rev. E 76 026105
[35]
Gao K, Jiang R, Wang B H and Wu Q S 2009 Physica A 388 3233
[36]
Tian J F, Jia B, Li X G, Zhao X M and Gao Z Y 2009 Physica A 388 4827
[37]
Zheng L, Ma S F and Zhong S Q 2011 Physica A 390 1072
[38]
Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
[39]
Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902
[40]
Lárraga M E and Alvarez-lcaza L 2010 Physica A 389 5425
[41]
Kokubo S, Tanimoto J and Hagishima A 2011 Physica A 390 561
[42]
Neto J P L, Lyra M L and da Silva C R 2011 Physica A 390 3558
[43]
Jia B, Li X G, Chen T, Jiang R and Gao Z Y 2011 Transportmetica 7 127
[44]
Tian J F, Yuan Z Z, Treiber M, Jia B and Zhang W Y 2012 Physica A 391 3129
[45]
Tian J F, Yuan Z Z, Jia B, Fan H Q and Wang T 2012 Phys. Lett. A 376 2781
[46]
Li X L, Kuang H, Song T, Dai S Q and Li Z P 2008 Chin. Phys. B 17 2366
[47]
Jiang R, Jin W L and Wu Q S 2008 Chin. Phys. B 17 829
[48]
Zhuang Q, Jia B and Li X G 2009 Chin. Phys. B 18 3271
[49]
He H D, Lu W Z and Dong L Y 2011 Chin. Phys. B 20 040514
[50]
Chen X Q, Li L, Jiang R and Yang X M 2010 Chin. Phys. Lett. 27 074501
[51]
Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902
[52]
Kong L J, Liu M R and Kuang H 2004 Acta Phys. Sin. 53 4138 (in Chinese)
[53]
Kong L J, Liu M R and Kuang H 2004 Acta Phys. Sin. 53 2894 (in Chinese)
[54]
Dai S Q, Xue Y and Lei L 2003 Acta Phys. Sin. 52 2121 (in Chinese)
[55]
Zhao X M, Xie D F and Gao Z Y 2008 Chin. Phys. B 17 4440
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.