Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 110702    DOI: 10.1088/1674-1056/ab4d40
GENERAL Prev   Next  

General analytical method of designing shielded coils for arbitrary axial magnetic field

Yi Zhang(张燚)1, Yu-Jiao Li(李玉姣)2, Qi-Yuan Jiang(江奇渊)1, Zhi-Guo Wang(汪之国)1, Tao Xia(夏涛)1, Hui Luo(罗晖)1
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
Abstract  Magnetic coils for specific requirements are widely used in modern quantum physics. In this study, a general analytical method of designing the shielded coils for generating an arbitrary axial magnetic field is proposed. The theoretical formula for an axial magnetic field generated by a single shielded coil is obtained and used to construct specific coils. The structural parameters of these coils are determined by fitting the theoretical formula with their specific requirements. The feasibility of this method is proved by realizing four concrete kinds of coils:uniform magnetic field generating coils, gradient magnetic field generating coils, asymmetrical uniform magnetic field generating coils, and parabolic magnetic field generating coils. The correctness of these theoretical results is demonstrated by both the finite element simulations and the relevant experimental results. Furthermore, the application of this method is of great significance for developing the quantum physics and quantum devices in future.
Keywords:  magnetic coils      analytical method      shielding      quantum device  
Received:  28 July 2019      Revised:  12 September 2019      Accepted manuscript online: 
PACS:  07.55.-w (Magnetic instruments and components)  
  07.55.Db (Generation of magnetic fields; magnets)  
  33.25.+k (Nuclear resonance and relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701515 and 61671458), the Postdoctoral Science Foundation, China (Grant No. 2017M613367), the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3608), and the Research Project of National University of Defense Technology, China (Grant No. ZK170204).
Corresponding Authors:  Zhi-Guo Wang, Hui Luo     E-mail:  maxborn@163.com;luohui.luo@163.com

Cite this article: 

Yi Zhang(张燚), Yu-Jiao Li(李玉姣), Qi-Yuan Jiang(江奇渊), Zhi-Guo Wang(汪之国), Tao Xia(夏涛), Hui Luo(罗晖) General analytical method of designing shielded coils for arbitrary axial magnetic field 2019 Chin. Phys. B 28 110702

[1] Li Y Y, Wang Z N and Wang S S 2017 Physics 46 307(in Chinese)
[2] Yano Y, Goka S and Kajita M 2017 Appl. Phys. B 123 67
[3] Zhao F J, Gao F, Han J X, Zhou C H, Meng J W, Wang Y B, Guo Y, Zhang S G and Chang H 2018 Acta Phys. Sin. 67 050601(in Chinese)
[4] Zhou F, Zhu C J, Hagley E W and Deng L 2017 Sci. Adv. 3 e1700422
[5] Zhao B B, Guo H, Zhao R, Du F F, Li Z H, Wang L, Wu D J, Chen Y L, Tang J and Liu J 2016 IEEE Magn. Lett. 7 1
[6] Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y and Lin Q 2010 Acta Phys. Sin. 59 877(in Chinese)
[7] Fang J C, Wang T, Zhang H, Li Y and Cai H W 2015 Chin. Phys. B 24 060702
[8] Li R J, Quan W, Fan W F, Xing L, Wang Z, Zhai Y Y and Fang J C 2017 Chin. Phys. B 26 120702
[9] Meyer D and Larsen M 2014 Gyroscopy & Navigation 5 75
[10] Chen L L, Zhou B Q, Lei G Q, Wu W F, Zhai Y Y, Wang Z and Fang J C 2017 AIP Adv. 7 115101
[11] Pritchard D E 1983 Phys. Rev. Lett. 51 1336
[12] Migdall A L, Prodan J V, Phillips W D, Bergeman T H and Metcalf H J 1985 Phys. Rev. Lett. 54 2596
[13] Soding J, Guery-Odelin D, Desbiolles P, Ferrari G and Dalibard J 1998 Phys. Rev. Lett. 80 1869
[14] Esslinger T, Bloch I and Hansch T W 1998 Phys. Rev. A 58 R2664
[15] Paul W 1990 Angew. Chem. Int. Edit. 29 739
[16] Wang Y H, Liu F, Li Y, Tang F F and Crozier S 2016 J. Magn. Reson. 269 203
[17] While P T, Korvink J G and Shah N J 2013 J. Magn. Reson. 235 85
[18] Abbott J J 2015 Rev. Sci. Instrum. 86 054701
[19] Beiranv R 2014 Rev. Sci. Instrum. 85 055115
[20] Knopp T, Sattel T F and Buzug T M 2012 IEEE Magn. Lett. 3 6500104
[21] Sasada I and Nakashima Y 2006 J. Appl. Phys. 99 08D904
[22] Wang J, She S and Zhang S 2002 College Physics 73 2175
[23] Koss P A, Crawford C, Bison G, Wursten E, Kasprzak M and Severijns N 2017 IEEE Magn. Lett. 8 1306205
[24] Hanson R J and Pipkin F M 1965 Rev. Sci. Instrum. 36 179
[25] Robert H L and Chauncey U 1975 Rev. Sci. Instrum. 46 337
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[3] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[4] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[5] Negative compressibility property in hinging open-cell Kelvin structure
Meng Ma(马梦), Xiao-Qin Zhou(周晓勤), Hao Liu(刘浩), and Hao-Cheng Wang(王浩成). Chin. Phys. B, 2021, 30(5): 056201.
[6] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[7] Development of 0.5-V Josephson junction array devices for quantum voltage standards
Lanruo Wang(王兰若), Jinjin Li(李劲劲), Wenhui Cao(曹文会), Yuan Zhong(钟源), Zhonghua Zhang(张钟华). Chin. Phys. B, 2019, 28(6): 068501.
[8] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[9] A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures
Ya-li Zhao(赵亚丽), Fu-hua Ma(马富花), Xu-feng Li(李旭峰), Jiang-jiang Ma(马江将), Kun Jia(贾琨), Xue-hong Wei(魏学红). Chin. Phys. B, 2018, 27(2): 027302.
[10] Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles
Pei Xiao(肖培), Ping-An Du(杜平安), Bao-Lin Nie(聂宝林), Dan Ren(任丹). Chin. Phys. B, 2017, 26(9): 094102.
[11] Negative linear compressibility of generic rotating rigid triangles
Xiao-Qin Zhou(周晓勤), Lei Zhang(张磊), Lu Yang(杨璐). Chin. Phys. B, 2017, 26(12): 126201.
[12] Tip-splitting instability in directional solidification based on bias field method
You Jia-Xue (游家学), Wang Zhi-Jun (王志军), Li Jun-Jie (李俊杰), Wang Jin-Cheng (王锦程). Chin. Phys. B, 2015, 24(7): 078107.
[13] Reciprocity principle-based model for shielding effectiveness prediction of a rectangular cavity with a covered aperture
Jiao Chong-Qing (焦重庆), Li Yue-Yue (李月月). Chin. Phys. B, 2015, 24(10): 104101.
[14] Through-silicon-via crosstalk model and optimization design for three-dimensional integrated circuits
Qian Li-Bo (钱利波), Zhu Zhang-Ming (朱樟明), Xia Yin-Shui (夏银水), Ding Rui-Xue (丁瑞雪), Yang Yin-Tang (杨银堂). Chin. Phys. B, 2014, 23(3): 038402.
[15] Unique electrical properties of nanostructured diamond cones
Gu Chang-Zhi (顾长志), Wang Qiang (王强), Li Jun-Jie (李俊杰), Xia Ke (夏钶). Chin. Phys. B, 2013, 22(9): 098107.
No Suggested Reading articles found!