|
|
Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study |
Yan-Ling Hu(胡燕玲), Hao-Ran Zhu(祝浩然), Shi-Hao Wei(韦世豪) |
Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract It is important for environmental protection to search for catalysts with excellent performance and cost-effective to reduce SO2 by CO. In this work, using first-principles calculation, we have studied the catalytic performance of Au5Mn (M=Ni, Pd, Pt, Cu, Ag, Au; n=1, 0, -1) clusters, and showed that, by giving a negative charge to the Au5M (M=Cu, Ag, Au, Pd) clusters, we could improve the selectivity of SO2 and avoid effectively catalyst CO poisoning simultaneously. At the same time, the catalytic reaction rate for the reduction of SO2 by CO with Au5M- (M=Cu, Ag, Au, Pd) clusters is greatly improved when the Au5M clusters are charged. These advantages can be well explained by the charge transfer between the clusters and adsorbed molecules, which means that we can effectively control the performance of the catalyst. The equilibrium structures of Au5Mn (M=Ni, Pd, Pt, Cu, Ag, Au; n=1, 0, -1) clusters without or with adsorbed SO2 or CO molecule are also discussed, and the most stable geometrical structures of Au5Mn-ML (ML=SO2, CO, SO, and COS) can be explained very well by the match of orbitals symmetry and density of electron cloud through their frontier molecular orbitals. Considering the catalyst cost (Cu is much cheaper than Ag and Au), selectivity of SO2, and effectively avoiding the catalyst CO poisoning, we propose that Au5Cu- is an ideal catalyst for getting rid of SO2 and CO simultaneously.
|
Received: 17 September 2019
Revised: 03 October 2019
Accepted manuscript online:
|
PACS:
|
31.15.Ar
|
|
|
36.40.Cg
|
(Electronic and magnetic properties of clusters)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375091), the Natural Science Foundation of Zhejiang, China (Grant No. LY18A040003), the Natural Science Foundation of Ningbo, China (Grant No. 2018A610220), and the K.C. Wong Magna Fund in Ningbo University, China. The computation was performed in the Supercomputer Center of NBU. |
Corresponding Authors:
Shi-Hao Wei
E-mail: weishihao@nbu.edu.cn
|
Cite this article:
Yan-Ling Hu(胡燕玲), Hao-Ran Zhu(祝浩然), Shi-Hao Wei(韦世豪) Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study 2019 Chin. Phys. B 28 113101
|
[36] |
Tsunoyama H, Sakurai H, Negishi Y and Tsukuda T 2005 J. Am. Chem. Soc. 127 9374
|
[1] |
Kennes C and Veiga M C 2001 Fundamentals of Air Pollution (Vol. 4) (Dordrecht:Springer) pp. 3-15
|
[37] |
Liu H, Liu Y, Li Y, Tang Z and Jiang H 2010 J. Phys. Chem. C 114 13362
|
[2] |
Bao H, Yu S and Tong D Q 2010 Nature 465 909
|
[38] |
Reina M and Martínez A 2018 Comput. Theor. Chem. 1130 15
|
[3] |
Li Y R and Gibson J M 2014 Environ. Sci.Technol. 48 10019
|
[39] |
Okumura M, Kitagawa Y, Haruta M and Yamaguchi K 2005 Appl. Catal. A General 291 37
|
[4] |
Chiang T Y, Yuan T H, Shie R H, Chen C F and Chan C C 2016 Environ. Int. 96 1
|
[40] |
Wang Z Y, Zhang T L, Li Q H, Xue Q and Wang R 2016 Comput. Theor. Chem. 1085 75
|
[5] |
Ishiguro A, Nakajima T, Iwata T, Fujita M, Minato T, Kiyotaki F and Matsui Y 2002 Chem. Eur. J. 8 3260
|
[41] |
Suggs K, Kiros F, Tesfamichael A, Felfli Z 2015 J. Phys:Conference Series 635 052018
|
[6] |
Paik S C, Kim H and Chung J S 1997 Catal. Today 38 193
|
[42] |
Zhang H X, Hu C H, Wang D H, Zhong Y, Zhou H Y, and Rao G H 2018 Chin. Phys. B 27 083601
|
[7] |
Liu W, Sarofim A F and Flytzani-Stephanopoulos M 1994 Appl. Catal. B:Environ. 4 167
|
[43] |
Wang H Q, Kuang X Y and Li H F 2010 Phys. Chem. Chem. Phys. 12 5156
|
[8] |
Zhu T, Kundakovic L, Dreher A and Flytzani-Stephanopoulos M 1999 Catal. Today 50 381
|
[44] |
Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
|
[9] |
Sarlis J and Berk D 1988 Ind. Eng. Chem. Res. 27 1951
|
[45] |
Guo J J, Wei C F, Yang J X and Die D 2010 Chin. Phys. B 19 113601
|
[10] |
Humeres E, Peruch M G B, Moreira R F P M and Schreiner W 2003 J. Phys. Org. Chem. 16 824
|
[46] |
Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 Chin. Phys. B 19 043103
|
[11] |
Wang X, Wang A, Wang X and Zhang T 2007 Energy Fuels 21 867
|
[47] |
Delley B 1990 J. Chem. Phys. 92 508
|
[12] |
Wang X, Wang A, Li N, Wang X, Liu Z and Zhang T 2006 Ind. Eng. Chem. Res. 45 4582
|
[48] |
Delley B 2000 J. Chem. Phys. 113 7756
|
[13] |
Gao G P, Wei S H and Duan X M 2012 J. Phys. Chem. C 116 24930
|
[49] |
Hammer B 1999 Phys. Rev. B 59 7413
|
[14] |
Lau N T, Fang M, Chan C K 2007 J. Catal. 245 301
|
[50] |
Yuan D W, Wang Y and Zeng Z 2005 J. Chem. Phys. 122 114310
|
[15] |
Liu W, Sarofim A F and Flytzani-Stephanopoulos M 1994 Appl. Catal. B:Environ. 4 167
|
[51] |
Lu J, Wei S H, Zhang Y Y, Hua D Y and Duan X M 2016 Comput. Theor. Chem. 1090 157
|
[16] |
Lemons R A 1990 J. Power Sources 29 251
|
[52] |
Zhao G F and Zeng Z 2006 J. Chem. Phys. 125 014303
|
[17] |
Hammer B and Norskov J K 1995 Nature 376 238
|
[53] |
Guo J J, Yang J X and Die D 2009 J. Mol. Struct. ThEOCHEM 896 1
|
[18] |
Haruta M, Kobayashi T, Sano H and Yamada N 1987 Chem. Lett. 16 405
|
[54] |
Guo J J, Shi J, Yang J X and Die D 2007 Physica B 393 363
|
[19] |
Tsubota S, Cunningham D A H, Bando Y and Haruta M 1995 Stud. Surf. Sci. Catal. 91 227
|
[55] |
Häkkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
|
[20] |
Haruta M 1997 Catal. Today 36 153
|
[56] |
Lu P, Kuang X Y, Mao A J, Wang Z H and Zhao Y R 2011 Mol. Phys. 109 2057
|
[21] |
Haruta M 1997 Catal. Surv. Asia 1 61
|
[57] |
Guo J J, Yang J X and Xu S L 2008 J. Atom. Mol. Phys. 4 17
|
[22] |
Haruta M 2003 Chem. Record 3 75
|
[58] |
Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 J. Catal. 224 206
|
[23] |
Valden M, Lai X and Goodman D W 1998 Science 281 1647
|
[24] |
Chen S, Luo L, Jiang Z and Huang W 2015 ACS Catalysis 5 1653
|
[25] |
Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, M.Lange K and Zhang B 2018 J. Am. Chem. Soc. 140 3876
|
[26] |
Wang L, Guan E, Zhang J, Yang J, Zhu Y, Han Y, Yang M, Cen C, Fu G, C.Gates B and Xiao F 2018 Nat. Commun. 9 1362
|
[27] |
Martirez J. M. P and Carter E. A 2016 ACS Nano 10 2940
|
[28] |
Ma J, Gong H, Zhang T, Yu H, Zhang R, Liu Z, Yang G, Sun H, Tang S and Qiu Y 2019 Appl. Sur. Sci. 488 1
|
[29] |
Liu X, Wang A, Li L, Zhang T, Mou C Y and Lee J F 2011 J. Catal. 278 288
|
[30] |
Zhang L, Kim H Y and Henkelman G 2013 J. Phys. Chem. Lett. 4 2943
|
[31] |
Roldán A, González Gonzalez S, Ricart J M and Illas F 2009 Chem. Phys. Chem. 10 348
|
[32] |
Lyalin A and Taketsugu T 2010 J. Phys. Chem. Lett. 1 1752
|
[33] |
Shekhar M, Wang J, Lee W S, Williams W D, Kim S M, Stach E A, Miller J T, Delgass W N, Ribeiro F H 2012 J. Am. Chem. Soc. 134 4700
|
[34] |
Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, Lin L, Wen X, Liu P and Chen B 2017 Science 357 389
|
[35] |
Prati L and Rossi M 1998 J. Catal. 176 552
|
[36] |
Tsunoyama H, Sakurai H, Negishi Y and Tsukuda T 2005 J. Am. Chem. Soc. 127 9374
|
[37] |
Liu H, Liu Y, Li Y, Tang Z and Jiang H 2010 J. Phys. Chem. C 114 13362
|
[38] |
Reina M and Martínez A 2018 Comput. Theor. Chem. 1130 15
|
[39] |
Okumura M, Kitagawa Y, Haruta M and Yamaguchi K 2005 Appl. Catal. A General 291 37
|
[40] |
Wang Z Y, Zhang T L, Li Q H, Xue Q and Wang R 2016 Comput. Theor. Chem. 1085 75
|
[41] |
Suggs K, Kiros F, Tesfamichael A, Felfli Z 2015 J. Phys:Conference Series 635 052018
|
[42] |
Zhang H X, Hu C H, Wang D H, Zhong Y, Zhou H Y, and Rao G H 2018 Chin. Phys. B 27 083601
|
[43] |
Wang H Q, Kuang X Y and Li H F 2010 Phys. Chem. Chem. Phys. 12 5156
|
[44] |
Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
|
[45] |
Guo J J, Wei C F, Yang J X and Die D 2010 Chin. Phys. B 19 113601
|
[46] |
Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 Chin. Phys. B 19 043103
|
[47] |
Delley B 1990 J. Chem. Phys. 92 508
|
[48] |
Delley B 2000 J. Chem. Phys. 113 7756
|
[49] |
Hammer B 1999 Phys. Rev. B 59 7413
|
[50] |
Yuan D W, Wang Y and Zeng Z 2005 J. Chem. Phys. 122 114310
|
[51] |
Lu J, Wei S H, Zhang Y Y, Hua D Y and Duan X M 2016 Comput. Theor. Chem. 1090 157
|
[52] |
Zhao G F and Zeng Z 2006 J. Chem. Phys. 125 014303
|
[53] |
Guo J J, Yang J X and Die D 2009 J. Mol. Struct. ThEOCHEM 896 1
|
[54] |
Guo J J, Shi J, Yang J X and Die D 2007 Physica B 393 363
|
[55] |
Häkkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
|
[56] |
Lu P, Kuang X Y, Mao A J, Wang Z H and Zhao Y R 2011 Mol. Phys. 109 2057
|
[57] |
Guo J J, Yang J X and Xu S L 2008 J. Atom. Mol. Phys. 4 17
|
[58] |
Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 J. Catal. 224 206
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|