Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 113101    DOI: 10.1088/1674-1056/ab4cdd
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study

Yan-Ling Hu(胡燕玲), Hao-Ran Zhu(祝浩然), Shi-Hao Wei(韦世豪)
Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  It is important for environmental protection to search for catalysts with excellent performance and cost-effective to reduce SO2 by CO. In this work, using first-principles calculation, we have studied the catalytic performance of Au5Mn (M=Ni, Pd, Pt, Cu, Ag, Au; n=1, 0, -1) clusters, and showed that, by giving a negative charge to the Au5M (M=Cu, Ag, Au, Pd) clusters, we could improve the selectivity of SO2 and avoid effectively catalyst CO poisoning simultaneously. At the same time, the catalytic reaction rate for the reduction of SO2 by CO with Au5M- (M=Cu, Ag, Au, Pd) clusters is greatly improved when the Au5M clusters are charged. These advantages can be well explained by the charge transfer between the clusters and adsorbed molecules, which means that we can effectively control the performance of the catalyst. The equilibrium structures of Au5Mn (M=Ni, Pd, Pt, Cu, Ag, Au; n=1, 0, -1) clusters without or with adsorbed SO2 or CO molecule are also discussed, and the most stable geometrical structures of Au5Mn-ML (ML=SO2, CO, SO, and COS) can be explained very well by the match of orbitals symmetry and density of electron cloud through their frontier molecular orbitals. Considering the catalyst cost (Cu is much cheaper than Ag and Au), selectivity of SO2, and effectively avoiding the catalyst CO poisoning, we propose that Au5Cu- is an ideal catalyst for getting rid of SO2 and CO simultaneously.
Keywords:  bimetallic clusters      catalyst      first-principles      electronic structure  
Received:  17 September 2019      Revised:  03 October 2019      Accepted manuscript online: 
PACS:  31.15.Ar  
  36.40.Cg (Electronic and magnetic properties of clusters)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375091), the Natural Science Foundation of Zhejiang, China (Grant No. LY18A040003), the Natural Science Foundation of Ningbo, China (Grant No. 2018A610220), and the K.C. Wong Magna Fund in Ningbo University, China. The computation was performed in the Supercomputer Center of NBU.
Corresponding Authors:  Shi-Hao Wei     E-mail:  weishihao@nbu.edu.cn

Cite this article: 

Yan-Ling Hu(胡燕玲), Hao-Ran Zhu(祝浩然), Shi-Hao Wei(韦世豪) Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO2 by CO: First-principles study 2019 Chin. Phys. B 28 113101

[36] Tsunoyama H, Sakurai H, Negishi Y and Tsukuda T 2005 J. Am. Chem. Soc. 127 9374
[1] Kennes C and Veiga M C 2001 Fundamentals of Air Pollution (Vol. 4) (Dordrecht:Springer) pp. 3-15
[37] Liu H, Liu Y, Li Y, Tang Z and Jiang H 2010 J. Phys. Chem. C 114 13362
[2] Bao H, Yu S and Tong D Q 2010 Nature 465 909
[38] Reina M and Martínez A 2018 Comput. Theor. Chem. 1130 15
[3] Li Y R and Gibson J M 2014 Environ. Sci.Technol. 48 10019
[39] Okumura M, Kitagawa Y, Haruta M and Yamaguchi K 2005 Appl. Catal. A General 291 37
[4] Chiang T Y, Yuan T H, Shie R H, Chen C F and Chan C C 2016 Environ. Int. 96 1
[40] Wang Z Y, Zhang T L, Li Q H, Xue Q and Wang R 2016 Comput. Theor. Chem. 1085 75
[5] Ishiguro A, Nakajima T, Iwata T, Fujita M, Minato T, Kiyotaki F and Matsui Y 2002 Chem. Eur. J. 8 3260
[41] Suggs K, Kiros F, Tesfamichael A, Felfli Z 2015 J. Phys:Conference Series 635 052018
[6] Paik S C, Kim H and Chung J S 1997 Catal. Today 38 193
[42] Zhang H X, Hu C H, Wang D H, Zhong Y, Zhou H Y, and Rao G H 2018 Chin. Phys. B 27 083601
[7] Liu W, Sarofim A F and Flytzani-Stephanopoulos M 1994 Appl. Catal. B:Environ. 4 167
[43] Wang H Q, Kuang X Y and Li H F 2010 Phys. Chem. Chem. Phys. 12 5156
[8] Zhu T, Kundakovic L, Dreher A and Flytzani-Stephanopoulos M 1999 Catal. Today 50 381
[44] Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
[9] Sarlis J and Berk D 1988 Ind. Eng. Chem. Res. 27 1951
[45] Guo J J, Wei C F, Yang J X and Die D 2010 Chin. Phys. B 19 113601
[10] Humeres E, Peruch M G B, Moreira R F P M and Schreiner W 2003 J. Phys. Org. Chem. 16 824
[46] Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 Chin. Phys. B 19 043103
[11] Wang X, Wang A, Wang X and Zhang T 2007 Energy Fuels 21 867
[47] Delley B 1990 J. Chem. Phys. 92 508
[12] Wang X, Wang A, Li N, Wang X, Liu Z and Zhang T 2006 Ind. Eng. Chem. Res. 45 4582
[48] Delley B 2000 J. Chem. Phys. 113 7756
[13] Gao G P, Wei S H and Duan X M 2012 J. Phys. Chem. C 116 24930
[49] Hammer B 1999 Phys. Rev. B 59 7413
[14] Lau N T, Fang M, Chan C K 2007 J. Catal. 245 301
[50] Yuan D W, Wang Y and Zeng Z 2005 J. Chem. Phys. 122 114310
[15] Liu W, Sarofim A F and Flytzani-Stephanopoulos M 1994 Appl. Catal. B:Environ. 4 167
[51] Lu J, Wei S H, Zhang Y Y, Hua D Y and Duan X M 2016 Comput. Theor. Chem. 1090 157
[16] Lemons R A 1990 J. Power Sources 29 251
[52] Zhao G F and Zeng Z 2006 J. Chem. Phys. 125 014303
[17] Hammer B and Norskov J K 1995 Nature 376 238
[53] Guo J J, Yang J X and Die D 2009 J. Mol. Struct. ThEOCHEM 896 1
[18] Haruta M, Kobayashi T, Sano H and Yamada N 1987 Chem. Lett. 16 405
[54] Guo J J, Shi J, Yang J X and Die D 2007 Physica B 393 363
[19] Tsubota S, Cunningham D A H, Bando Y and Haruta M 1995 Stud. Surf. Sci. Catal. 91 227
[55] Häkkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
[20] Haruta M 1997 Catal. Today 36 153
[56] Lu P, Kuang X Y, Mao A J, Wang Z H and Zhao Y R 2011 Mol. Phys. 109 2057
[21] Haruta M 1997 Catal. Surv. Asia 1 61
[57] Guo J J, Yang J X and Xu S L 2008 J. Atom. Mol. Phys. 4 17
[22] Haruta M 2003 Chem. Record 3 75
[58] Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 J. Catal. 224 206
[23] Valden M, Lai X and Goodman D W 1998 Science 281 1647
[24] Chen S, Luo L, Jiang Z and Huang W 2015 ACS Catalysis 5 1653
[25] Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, M.Lange K and Zhang B 2018 J. Am. Chem. Soc. 140 3876
[26] Wang L, Guan E, Zhang J, Yang J, Zhu Y, Han Y, Yang M, Cen C, Fu G, C.Gates B and Xiao F 2018 Nat. Commun. 9 1362
[27] Martirez J. M. P and Carter E. A 2016 ACS Nano 10 2940
[28] Ma J, Gong H, Zhang T, Yu H, Zhang R, Liu Z, Yang G, Sun H, Tang S and Qiu Y 2019 Appl. Sur. Sci. 488 1
[29] Liu X, Wang A, Li L, Zhang T, Mou C Y and Lee J F 2011 J. Catal. 278 288
[30] Zhang L, Kim H Y and Henkelman G 2013 J. Phys. Chem. Lett. 4 2943
[31] Roldán A, González Gonzalez S, Ricart J M and Illas F 2009 Chem. Phys. Chem. 10 348
[32] Lyalin A and Taketsugu T 2010 J. Phys. Chem. Lett. 1 1752
[33] Shekhar M, Wang J, Lee W S, Williams W D, Kim S M, Stach E A, Miller J T, Delgass W N, Ribeiro F H 2012 J. Am. Chem. Soc. 134 4700
[34] Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, Lin L, Wen X, Liu P and Chen B 2017 Science 357 389
[35] Prati L and Rossi M 1998 J. Catal. 176 552
[36] Tsunoyama H, Sakurai H, Negishi Y and Tsukuda T 2005 J. Am. Chem. Soc. 127 9374
[37] Liu H, Liu Y, Li Y, Tang Z and Jiang H 2010 J. Phys. Chem. C 114 13362
[38] Reina M and Martínez A 2018 Comput. Theor. Chem. 1130 15
[39] Okumura M, Kitagawa Y, Haruta M and Yamaguchi K 2005 Appl. Catal. A General 291 37
[40] Wang Z Y, Zhang T L, Li Q H, Xue Q and Wang R 2016 Comput. Theor. Chem. 1085 75
[41] Suggs K, Kiros F, Tesfamichael A, Felfli Z 2015 J. Phys:Conference Series 635 052018
[42] Zhang H X, Hu C H, Wang D H, Zhong Y, Zhou H Y, and Rao G H 2018 Chin. Phys. B 27 083601
[43] Wang H Q, Kuang X Y and Li H F 2010 Phys. Chem. Chem. Phys. 12 5156
[44] Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
[45] Guo J J, Wei C F, Yang J X and Die D 2010 Chin. Phys. B 19 113601
[46] Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 Chin. Phys. B 19 043103
[47] Delley B 1990 J. Chem. Phys. 92 508
[48] Delley B 2000 J. Chem. Phys. 113 7756
[49] Hammer B 1999 Phys. Rev. B 59 7413
[50] Yuan D W, Wang Y and Zeng Z 2005 J. Chem. Phys. 122 114310
[51] Lu J, Wei S H, Zhang Y Y, Hua D Y and Duan X M 2016 Comput. Theor. Chem. 1090 157
[52] Zhao G F and Zeng Z 2006 J. Chem. Phys. 125 014303
[53] Guo J J, Yang J X and Die D 2009 J. Mol. Struct. ThEOCHEM 896 1
[54] Guo J J, Shi J, Yang J X and Die D 2007 Physica B 393 363
[55] Häkkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
[56] Lu P, Kuang X Y, Mao A J, Wang Z H and Zhao Y R 2011 Mol. Phys. 109 2057
[57] Guo J J, Yang J X and Xu S L 2008 J. Atom. Mol. Phys. 4 17
[58] Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 J. Catal. 224 206
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
No Suggested Reading articles found!