Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 110302    DOI: 10.1088/1674-1056/ab44ae
GENERAL Prev   Next  

Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor

Maimaitiyiming Tusun(麦麦提依明·吐孙)1,2,3,4, Yang Wu(伍旸)1,2,3, Wenquan Liu(刘文权)1,2,3, Xing Rong(荣星)1,2,3, Jiangfeng Du(杜江峰)1,2,3
1 Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China;
3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
4 School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
Abstract  There are some problems that quantum computers seem to be exponentially faster than classical computers, like factoring large numbers, machine learning, and simulation of quantum systems. Constructing an appropriate quantum algorithm becomes more important for solving these specific problems. In principle, any quantum algorithm can recast by a quantum random walk algorithm. Although quantum random walk with a few qubits has been implemented in a variety of systems, the experimental demonstration of solid-state quantum random walk remains elusive. Here we report the experimental implementation of the quantum continuous-time random walk algorithm by a two-qubit quantum processor in a nitrogen-vacancy center in diamond. We found that quantum random walk on a circle does not converge to any stationary distribution and exhibit a reversible property. Our results represent a further investigation of quantum walking dynamics in solid spin platforms, may also lead to other practical applications by the use of quantum continuous-time random walk for quantum algorithm design and quantum coherence transport.
Keywords:  quantum computations      quantum algorithm      color centers  
Received:  08 July 2019      Revised:  27 August 2019      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  07.05.Kf (Data analysis: algorithms and implementation; data management)  
  61.72.Ji  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0306600 and 2016YFB0501603), the National Natural Science Foundation of China (Grant No. 11761131011), the Fund from the Chinese Academy of Sciences (Grant Nos. GJJSTD20170001, QYZDY-SSW-SLH004, and QYZDB-SSW-SLH005), the Anhui Initiative Fund in Quantum Information Technologies, China (Grant No. AHY050000), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
Corresponding Authors:  Xing Rong, Jiangfeng Du     E-mail:  xrong@ustc.edu.cn;djf@ustc.edu.cn

Cite this article: 

Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰) Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor 2019 Chin. Phys. B 28 110302

[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[2] Deutsch D 1985 P. Roy. Soc. Lond. Mat. 400 97
[3] Shor P W 1994 Proceedings 35 th Annual Symposium on Foundations of Computer Science, November 20-22, 1994, Santa Fe, NM, USA, pp. 124-134
[4] Tang H, Franco C D, Shi Z Y, He T S, Feng Z, Gao J, Sun K, Li Z M, Jiao Z Q, Wang T Y, Kim M S and Jin X M 2018 Nat. Photon. 12 754
[5] Harris N C, Steinbrecher G R, Prabhu M, Lahini Y, Mower J, Bunandar D, Chen C, Wong F N C, Baehr-Jones T, Hochberg M, Lloyd S and Englund D 2017 Nat. Photon. 11 447
[6] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[7] Childs A M, Farhi E and Gutmann S 2002 Quantum Inf. Process. 1 35
[8] Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X and Pan J W 2019 Science 364 753
[9] Mulken O and Blumen A 2006 Phys. Rev. E 73 066117
[10] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[11] Childs A M 2009 Phys. Rev. Lett. 102 180501
[12] Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y and Han R D 2003 Phys. Rev. A 67 042316
[13] Ryan C A, Laforest M, Boileau J C and Laflamme R 2005 Phys. Rev. A 72 062317
[14] Do B, Stohler M L, Balasubramanian S, Elliott D S, Eash C, Fischbach E, Fischbach M A, Mills A and Zwickl B 2005 JOSA B 22 499
[15] Schreiber A, Cassemiro K N, Potocek V, Gabris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
[16] Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103090504
[17] Zahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104100503
[18] Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325174
[19] Carolan J, Meinecke J D A, Shadbolt P J, Russell N J, Ismail N, Worhoff K, Rudolph T, Thompson M G, O Brien J L, Matthew J C F and Laing A 2014 Nat. Photon. 8 621
[20] Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R and Silberberg Y 2008 Phys. Rev. Lett. 100 170506
[21] Qiang X G, Loke T, Montanaro A, Aungskunsiri K, Zhou X Q, O'Brien J L, Wang J B B and Matthews J C F 2016 Nat. Commun. 7 11511
[22] Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y and Wang Y 2018 Sci. Adv. 4 eaat3174
[23] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[24] Jacques V, Neumann P, Beck J, Markham M, Twitchen D, Meijer J, Kaiser F, Balasubramanian G, Jelezko F and Wrachtrup J 2009 Phys. Rev. Lett. 102 057403
[25] Wu Y, Wang Y, Qin X, Rong X and Du J F 2019 npj Quantum Information 5 9
[26] Childs A M, Gosset D and Webb Z 2013 Science 339 791
[1] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[2] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[3] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[4] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[5] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[6] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[7] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[8] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[9] Estimation of vector static magnetic field by a nitrogen-vacancy center with a single first-shell 13C nuclear (NV-13C) spin in diamond
Feng-Jian Jiang(蒋峰建), Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Zhi-Yong Huang(黄志永), Hai-Jiang Lv(吕海江). Chin. Phys. B, 2018, 27(5): 057601.
[10] Experimental investigation of vector static magnetic field detection using an NV center with a single first-shell 13C nuclear spin in diamond
Feng-Jian Jiang(蒋峰建), Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Jun Jiang(蒋军), Kun Ma(马堃), Xin-Hu Yan(闫新虎), Hai-Jiang Lv(吕海江). Chin. Phys. B, 2018, 27(5): 057602.
[11] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[12] Gamma-radiation effects in pure-silica-core photonic crystal fiber
Wei Cai(蔡伟), Ningfang Song(宋凝芳), Jing Jin(金靖), Jingming Song(宋镜明), Wei Li(李伟), Wenyong Luo(罗文勇), Xiaobin Xu(徐小斌). Chin. Phys. B, 2017, 26(11): 114211.
[13] Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application
Jing Jin(金靖), Ya Li(李亚), Zu-Chen Zhang(张祖琛), Chun-Xiao Wu(吴春晓), Ning-Fang Song(宋凝芳). Chin. Phys. B, 2016, 25(8): 084213.
[14] Realization of quantum Fourier transform over ZN
Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超). Chin. Phys. B, 2014, 23(2): 020306.
[15] Application of quantum algorithms to direct measurement of concurrence of a two-qubit pure state
Wang Hong-Fu(王洪福) and Zhang Shou(张寿). Chin. Phys. B, 2009, 18(7): 2642-2648.
No Suggested Reading articles found!