Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094210    DOI: 10.1088/1674-1056/ab33f5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction

Shao-He Li(李绍和), Jiu-Sheng Li(李九生)
Center for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  

The digital coding metasurfaces need several kinds of meta-particle structures to obtain corresponding electromagnetic wave responses and require time-consuming optimization. In this paper, we present train-symbol-shaped meta-particles with various orientations utilizing Pancharatnam-Berry (PB) phase to achieve 1-, 2-, and 3-bit digital coding metasurfaces. Terahertz wave scattering patterns of the coding metasurfaces with regular and random sequences are given and discussed. They have strongly suppressed backward scattering with approximately -13.5 dB radar cross section (RCS) reduction in a wide band range from 0.85 THz to 1.6 THz. The proposed digital coding metasurfaces provide a simple way and new opportunities for manipulating terahertz wave scattering with polarization independence.

Keywords:  terahertz metasurface      terahertz optics      terahertz polarization  
Received:  24 March 2019      Revised:  09 June 2019      Accepted manuscript online: 
PACS:  42.68.Mj (Scattering, polarization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355 and 61831012).

Corresponding Authors:  Jiu-Sheng Li     E-mail:  jshli@126.com

Cite this article: 

Shao-He Li(李绍和), Jiu-Sheng Li(李九生) Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction 2019 Chin. Phys. B 28 094210

[1] Zhang K, Wu Q, Fu J H, Meng F Y and Li L W 2012 IEEE Trans. Magn. 48 4289
[2] Shi H Y, Zhang A X, Zheng S, Li J X and Jiang Y S 2014 Appl. Phys. Lett. 104 034102
[3] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[4] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z and Zhang A X 2015 J. Appl. Phys. 117 044501
[5] Huang X J, Chen J and Yang H L 2017 J. Appl. Phys. 122 043102
[6] Estakhri N M and Alu A 2014 IEEE Antennas Wireless Propag. Lett. 13 1775
[7] Ni X, Wong Z J, Mrejen M, Wang Y and Zhang X 2015 Science 349 1310
[8] Yu N F, Aieta F, Genevet P, Kats M A, Gaburro Z and Capasso F 2012 Nano Lett. 12 6328
[9] Li X, Xiao S Y, Cai B G, He Q, Cui T J and Zhou L 2012 Opt. Lett. 37 4940
[10] Huang L L, Chen X Z, Mühlenbernd H, Zhang H, Chen S M, Bai B F, Tan Q F, Jin G F, Cheah K W, Qiu C W, Li J S, Zentgraf T and Zhang S 2013 Nat. Commun. 4 2808
[11] Wen D D, Yue F Y, Li G X, Zheng G X, Chan K L, Chen S M, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S and Chen X Z 2015 Nat. Commun. 6 8241
[12] Li J S, Zhao Z J and Yao J Q 2017 Opt. Express 25 29983
[13] Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H and Liu S G 2015 Adv. Opt. Mater. 3 1374
[14] Zhao J, Cheng Q, Wang T Q, Yuan W and Cui T J 2017 Opt. Express 25 1050
[15] Xu H, Ma S, Ling X, Zhang X, Tang S, Cai T, Sun S, He Q and Zhou L 2018 ACS Photon. 5 1691
[16] Berry M V 1987 J. Mod. Opt. 34 1401
[17] Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A, Wu Q, Qiu C W and Alú A 2015 Adv. Mater. 27 1195
[18] He X X, Wang G M, Cai T, Xiao J and Zhuang Y Q 2016 Opt. Express 24 27836
[19] Gao L H, Cheng Q, Yang J, Ma S J, Zhao J, Liu S, Chen H B, He Q, Jiang W X, Ma H F, Wen Q Y, Liang L J, Jin B B, Liu W W, Zhou L, Yao J Q, Wu P H and Cui T J 2015 Light:Sci. & Appl. 4 e324
[20] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Light:Sci. &Appl. 3 e218
[1] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
No Suggested Reading articles found!