Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 105202    DOI: 10.1088/1674-1056/ab9c09
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Hardening effect of multi-energyW2+-ion irradiation on tungsten–potassium alloy

Yang-Yi-Peng Song(宋阳一鹏)1, Wen-Bin Qiu(邱文彬)1, Long-Qing Chen(陈龙庆)1, Xiao-Liang Yang(杨晓亮)1, Hao Deng(邓浩)1, Chang-Song Liu(刘长松)2, Kun Zhang(张坤)1,†, and Jun Tang(唐军)1,
1 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
2 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  

Tungsten is one of the most promising plasma-facing materials (PFMs) to be used in the nuclear fusion reactor as divertor material in the future. In this work, W2+-ions bombardment is used to simulate the neutron irradiation damage to commercial pure tungsten (W) and rolled tungsten–potassium (W–K). The 7 MeV of 3 × 1015 W2+-ions/cm2, 3 MeV of 4.5 × 1014 W2+, and 2 MeV of 3 × 1014 W2+-ions/cm2 are applied at 923 K in sequence to produce a uniform region of 100 nm–400 nm beneath the sample surface with the maximum damage value of 11.5 dpa. Nanoindentation is used to inspect the changes in hardness and elastic modulus after self-ion irradiation. Irradiation hardening occurred in both materials. The irradiation hardening of rolled W–K is affected by two factors: one is the absorption of vacancies and interstitial atoms by potassium bubbles, and the other is the interaction between potassium bubbles and dislocations. Under the condition of 11.5 dpa, the capability of defect absorption can reach a threshold. As a result, dislocations finally dominate the hardening of rolled W–K. Specific features of dislocation loops in W–K are further observed by transmission electron microscopy (TEM) to explain the hardening effect. This work might provide valuable enlightenment for W–K alloy as a promising plasma facing material candidate.

Keywords:  plasma facing material      tungsten-potassium alloy      ion-irradiation hardening      nanoindentation  
Received:  24 February 2020      Revised:  28 May 2020      Accepted manuscript online:  12 June 2020
PACS:  52.55.Rk (Power exhaust; divertors)  
  61.80.Jh (Ion radiation effects)  
  28.52.Fa (Materials)  
Corresponding Authors:  Corresponding author. E-mail: kzhang@scu.edu.cn Corresponding author. E-mail: tangjun@scu.edu.cn   
About author: 
†Corresponding author. E-mail: kzhang@scu.edu.cn
‡Corresponding author. E-mail: tangjun@scu.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 11975160 and 11775149). One of the authors, Kun Zhang, was supported by the Fundamental Research Funds for the Central Universities, China.

Cite this article: 

Yang-Yi-Peng Song(宋阳一鹏), Wen-Bin Qiu(邱文彬), Long-Qing Chen(陈龙庆), Xiao-Liang Yang(杨晓亮), Hao Deng(邓浩), Chang-Song Liu(刘长松), Kun Zhang(张坤)†, and Jun Tang(唐军)‡ Hardening effect of multi-energyW2+-ion irradiation on tungsten–potassium alloy 2020 Chin. Phys. B 29 105202

Fig. 1.  

Schematic diagram of spark plasma sintering (SPS) device.

Fig. 2.  

Damage profiles of self-ion implantation calculated by SRIM mode.

Fig. 3.  

Nanoindentation measured load displacement curves for pure tungsten and rolled W–K before and after irradiation.

Fig. 4.  

Hardness versus displacement for (a) rolled W–K and (b) pure W, showing an increase in hardness after self-ion irradiation.

Fig. 5.  

Hardness decreasing with displacement increasing for rolled W–K and pure W after self-ion implanted.

Fig. 6.  

Load–diaplacement2 (Pδ2) curves for (a) pure W and (c) rolled W–K, unirradiated and irradiated. Gradient (K) of Pδ2 lines (b) in panel (a) and (d) in panel (c) versus displacement.

Fig. 7.  

TEM images of dislocation loops in pure W and rolled W–K irradiated to 11.5-dpa damage (TEM bright field images): (a) unirradiated W–K; (b) 11.5-dpa region of rolled W–K; (c) DAR of rolled W–K; (d) 11.5-dpa region of pure W; (e) DAR of pure W. All images have the same scale bar of 100 nm. Red arrow points to top surface of sample, and white box highlighting area enlarged shows dislocation loops of around 15 nm in size.

Fig. 8.  

(a) Surface morphology of pure W unirradiated. (b) Surface morphology of pure W irradiated. (c) Surface morphology of rolled W–K unirradiated. (d) Surface morphology of rolled W–K irradiated.

Fig. 9.  

(a) Elasticity moduli of pure tungsten and rolled W–K alloy samples. (b) XRD spectra of tungsten self-ions irradiated samples with black line representing the pure tungsten after being irradiated, red line the pure tungsten before being irradiated, blue line the W–K alloy after being irradiated, and green line the W–K alloy before being irradiated.

[1]
Hu X, Koyanagi T, Fukuda M, Katoh Y, Snead L L, Wirth B D 2016 J. Nucl. Mater. 470 278 DOI: 10.1016/j.jnucmat.2015.12.040
[2]
Yang X L, Qiu W B, Chen L Q, Tang J 2019 Tungsten 1 141 DOI: 10.1007/s42864-019-00018-5
[3]
You Y W, Kong X S, Wu X B, Liu C S, Chen J L 2017 Nucl. Fusion 57 016006 DOI: 10.1088/0029-5515/57/1/016006
[4]
Hu X X, Koyanagi T, Fukuda M, Kumar N A P L, Snead L L, Wirth B D, Katoh Y 2016 J. Nucl. Mater. 480 235 DOI: 10.1016/j.jnucmat.2016.08.024
[5]
Renterghem W V, Uytdenhouwen I 2016 J. Nucl. Mater. 477 77 DOI: 10.1016/j.jnucmat.2016.05.008
[6]
Hwang T, Hasegawa A, Tomura K, Ebisawa N, Toyama T, Nagai Y, Fukuda M, Miyazawa T, Tanaka T, Nogami S 2018 J. Nucl. Mater. 507 78 DOI: 10.1016/j.jnucmat.2018.04.031
[7]
Hasegawa A, Fukuda M, Yabuuchi K, Nogami S 2016 J. Nucl. Mater. 471 175 DOI: 10.1016/j.jnucmat.2015.10.047
[8]
Fujitsuka M, Tsuchiya B, Mutoh I, Tanabe T, Shikama T 2000 J. Nucl. Mater. 283–287 1148 DOI: 10.1016/S0022-3115(00)00170-7
[9]
Ogorodnikova O V, Gann V 2015 J. Nucl. Mater. 460 60 DOI: 10.1016/j.jnucmat.2015.02.004
[10]
Huang S L, Ran G, Lei P H, Chen N j, Wu S H, Li N, Shen Q 2017 Nucl. Instrum. Method B 406 585 DOI: 10.1016/j.nimb.2017.04.063
[11]
Zhang Y X, Tan X Y, Luo L M, Xu Y, Zan X, Xu Q, Tokunaga K, Zhu X Y, Wu Y C 2019 Fusion Eng. Des. 140 102 DOI: 10.1016/j.fusengdes.2019.01.134
[12]
Cui M H, Shen T L, Zhu H P, Wang J, Cao X Z, Zhang P, Pang L L, Yao C F, Wei K F, Zhu Y B, Li B S, Sun J R, Gao N, Gao X, Zhang H P, Sheng Y B, Chang H L, He W H, Wang Z G 2017 Fusion Eng. Des. 121 313 DOI: 10.1016/j.fusengdes.2017.05.043
[13]
El-Atwani O, Esquivel E, Efe M, Aydogan E, Wang Y Q, Martinez E, Maloy S A 2018 Acta Mater. 149 206 DOI: 10.1016/j.actamat.2018.02.035
[14]
Xu A, Beck C, Armstrong D E J, Rajan K, Smith G D W, bagot P A J, Roberts S G 2015 Acta Mater. 87 121 DOI: 10.1016/j.actamat.2014.12.049
[15]
Xu A, Armstrong D E J, Beck C, Moody P M, Smith G D W, Bagot P A J, Roberts S G 2017 Acta Mater. 124 71 DOI: 10.1016/j.actamat.2016.10.050
[16]
Huang B, Chen L Q, Qiu W B, Yang X L, Shi K, Lian Y Y, Liu X, Tang J 2019 J. Nucl. Mater. 520 6 DOI: 10.1016/j.jnucmat.2019.03.056
[17]
Nogami S, Watanabe S, Reiser J, Rieth M, Sickinger S, Hasegawa A 2019 Fusion Eng. Des. 140 48 DOI: 10.1016/j.fusengdes.2019.01.130
[18]
Huang B, Xiao Y, He B, Yang J J, Liao J L, Yang Y Y, Liu N, Lian Y Y, Liu X, Tang J 2015 Int. J. Refract. Met. Hard Mater. 51 19 DOI: 10.1016/j.ijrmhm.2015.02.001
[19]
He B, Huang B, Xiao Y, Lian Y Y, Liu X, Tang J 2016 J. Alloys Compd. 686 298 DOI: 10.1016/j.jallcom.2016.05.010
[20]
Xiao Y, Huang B, He B, Shi K, Lian Y Y, Liu X, Tang J 2016 J. Alloys Compd. 678 533 DOI: 10.1016/j.jallcom.2016.04.027
[21]
Ogorodnikova O V, Tyburska B, Alimov V K, Ertl K 2011 J. Nucl. Mater. 415 S661 DOI: 10.1016/j.jnucmat.2010.12.012
[22]
Egeland G W, Valdez J A, Amloy S A, McClellan K J, Sickafus K E, Bond G M 2013 J. Nucl. Mater. 435 77 DOI: 10.1016/j.jnucmat.2012.12.025
[23]
Wang K, Qi Q, Cheng G J, Shi L Q 2014 Chin. Phys. Lett. 31 072801 DOI: 10.1088/0256-307X/31/7/072801
[24]
Li X D, Bhushan B 2002 Mater. Charact. 48 11 DOI: 10.1016/S1044-5803(02)00192-4
[25]
Bull S J 2005 J. Phys. D: Appl. Phys. 38 R393 DOI: 10.1088/0022-3727/38/24/R01
[26]
Hainsworth S V, Chandler H W, Page T F 1996 J. Mater. Res. 11 1987 DOI: 10.1557/JMR.1996.0250
[27]
McGurk M R, Page T F 1999 J. Mater. Res. 14 2283 DOI: 10.1557/JMR.1999.0305
[28]
Ciupiński Ł, Ogorodnikova O V, Płociński T, Andrzejczuk M, Rasiński M, Mayer M, Kurzydłowski K J 2013 Nucl. Instrum. Method B 317 159 DOI: 10.1016/j.nimb.2013.03.022
[29]
Gilbert M R, Dudarev S L, Derlet P M, Pettifor D G 2008 J. Phys.: Condens. Matter 20 345214 DOI: 10.1088/0953-8984/20/34/345214
[30]
Keys L K, Smith J P, Moteff J 1968 Phys. Rev. 176 851 DOI: 10.1103/PhysRev.176.851
[31]
Sakamoto R, Muroga T, Yoshida N 1995 J. Nucl. Mater. 220–222 819 DOI: 10.1016/0022-3115(94)00622-9
[32]
Huang B, Tang J, Chen L Q, Yang X L, Lian Y Y, Chen L, Liu X, Cui X D, Gu L, Liu C T 2019 J. Alloys Compd. 782 149 DOI: 10.1016/j.jallcom.2018.12.168
[33]
Yang X L, Chen L Q, Qiu W B, Song Y Y P, Tang Y, Cui X D, Liu C S, Jiang Y, Zhang T, Tang J 2020 Chin. Phys. B 29 046102 DOI: 10.1088/1674-1056/ab75cf
[34]
Li W N, Xue J M, Wang J X, Duan H L 2014 Chin. Phys. B 23 036101 DOI: 10.1088/1674-1056/23/3/036101
[1] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[2] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[3] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[4] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[5] Irradiation hardening behaviors of tungsten-potassium alloy studied by accelerated 3-MeV W2+ ions
Xiao-Liang Yang(杨晓亮), Long-Qing Chen(陈龙庆), Wen-Bin Qiu(邱文彬), Yang-Yi-Peng Song(宋阳一鹏), Yi Tang(唐毅), Xu-Dong Cui(崔旭东), Chang-Song Liu(刘长松), Yan Jiang(蒋燕), Tao Zhang(张涛), Jun Tang(唐军). Chin. Phys. B, 2020, 29(4): 046102.
[6] Molecular dynamics study of plastic deformation mechanism in Cu/Ag multilayers
Yuan-Yuan Tian(田圆圆), Jia Li(李甲), Ze-Ying Hu(胡泽英), Zhi-Peng Wang(王志鹏), Qi-Hong Fang(方棋洪). Chin. Phys. B, 2017, 26(12): 126802.
[7] Indenter size effect on the reversible incipient plasticity of Al (001) surface: Quasicontinuum study
Tang Dan (唐丹), Shao Yu-Fei (邵宇飞), Li Jiu-Hui (李久会), Zhao Xing (赵星), Qi Yang (祁阳). Chin. Phys. B, 2015, 24(8): 086805.
[8] Effect of helium implantation on SiC and graphite
Guo Hong-Yan (郭洪燕), Ge Chang-Chun (葛昌纯), Xia Min (夏敏), Guo Li-Ping (郭立平), Chen Ji-Hong (陈济鸿), Yan Qing-Zhi (燕青芝). Chin. Phys. B, 2015, 24(3): 037803.
[9] Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel
Sun Shi-Cheng (孙世成), Sun Gui-Xun (孙贵训), Jiang Zhong-Hao (江忠浩), Ji Chang-Tao (季长涛), Liu Jia-An (刘家安), Lian Jian-She (连建设). Chin. Phys. B, 2014, 23(2): 026104.
[10] Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Yongqing Cai, S. A. Ahmad. Chin. Phys. B, 2013, 22(9): 096101.
[11] Dislocation-mediated creep process in nanocrystalline Cu
Mu Jun-Wei (穆君伟), Sun Shi-Cheng (孙世成), Jiang Zhong-Hao (江忠浩), Lian Jian-She (连建设), Jiang Qing (蒋青). Chin. Phys. B, 2013, 22(3): 037303.
[12] Molecular dynamics study of mechanical characteristics of Ni/Cu bilayer using nanoindentation
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, S. A. Ahmad. Chin. Phys. B, 2012, 21(12): 126802.
No Suggested Reading articles found!