Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 083301    DOI: 10.1088/1674-1056/28/8/083301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures

Jun Zhou(周俊)1,2, Jian-Shuo Zhang(张建烁)2, Guo-Yu Xian(冼国裕)2, Qi Qi(齐琦)2, Shang-Zhi Gu(顾尚志)2, Cheng-Min Shen(申承民)2, Zhao-Hua Cheng(成昭华)2, Sheng-Tai He(何声太)1, Hai-Tao Yang(杨海涛)2
1 School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Metal-semiconductor Janus nanostructures with asymmetry and directionality have recently aroused significant interest, both in fundamental light-matter interactions mechanism and in technological applications. Here we report the synthesis of different Au-ZnO Janus nanostructures via a facile one-pot colloid method. The growth mechanism is revealed by a series of designed synthesis experiments. The light absorption properties are determined by both the decrease of dipole oscillations of the free electrons and the plasmon-induced hot-electron transfer. Moreover, the finite-difference time-domain (FDTD) simulation method is used to elucidate the electric field distributions of these Janus nanostructures.

Keywords:  Au-ZnO      SERS      finite-difference time-domain      mechanism  
Received:  29 May 2019      Revised:  11 June 2019      Accepted manuscript online: 
PACS:  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
  47.54.Bd (Theoretical aspects)  
  47.54.Jk (Materials science applications)  
  52.38.-r (Laser-plasma interactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274370 and 51471185) and the National Key Research and Development Program of China (Grant Nos. 2016YFJC020013 and 2018FYA0305800).

Corresponding Authors:  Sheng-Tai He, Hai-Tao Yang     E-mail:  sht-he@tjpu.edu.cn;htyang@iphy.ac.cn

Cite this article: 

Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛) Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures 2019 Chin. Phys. B 28 083301

[1] Wang D S and Li Y D 2010 J. Am. Chem. Soc. 132 6280
[2] Zhang J T, Tang Y, Lee K and Ouyang M 2010 Nature 466 91
[3] Kwak J, Bae W K, Zorn M, Woo H, Yoon H, Lim J, Kang S W, Weber S, Butt H J, Zentel R, Lee S, Char K and Lee C 2009 Adv. Mater. 21 5002
[4] Dixit T, Palani I A and Singh V 2016 Mater. Lett. 181 183
[5] Wu S H, Chan C H, Chien C H, Yaseen M T, Liang C T and Chang Y C 2016 Appl. Phys. Lett. 108 041104
[6] Walther A and Müller A H E 2013 Chem. Rev. 113 5194
[7] Li P, Wei Z, Wu T, Peng Q and Li Y D 2011 J. Am. Chem. Soc. 133 5660
[8] Chen Y Z, Zeng D Q, Zhang K, Lu A L, Wang L S and Peng D L 2014 Nanoscale 6 874
[9] Zeng D Q, Gong P Y, Chen Y Z, Wang C G and Peng D L 2015 Mater. Lett. 161 379
[10] Liu L P, Yang H T and Ren X 2015 Nanoscale 7 5147
[11] Schladt T D, Shukoor M I, Schneider K, Tahir M N, Natalio F, Ament I, Becker J, Jochum F D, Weber, Khler S O, Theato P, Schreiber L M, Snnichsen C, Schrder H C, Muller W E G and Tremel W G 2010 Angew. Chem. Int. Ed. 49 3976
[12] Wanga P L, Linc Z Y and Su X O 2017 Nano Today 12 64
[13] Juste J P, Santos I P, Liz L M and Mulvaney P 2005 Coordination Chemistry Reviews 249 1870
[14] Wu X F, Song H Y, Yoon J M, Yu Y T and Chen F Y 2009 Langmuir 25 6438
[15] Lee M K, Kim T G, Kim W and Sung Y M 2008 J. Phys. Chem. C 112 10079
[16] Ding W, Chen Y H and Li Z Y 2014 Chin. Phys. B 23 037301
[17] Xie S X, Li H J, Zhou X, Xu H Q and Fu S L 2010 Chin. Phys. B 19 077803
[18] Averitt R D, Sarkar D and Halas N J 1997 Phys. Rev. Lett. 78 4217
[19] Alvarez-Puebla R, Liz-Marzán L M and García de Abajo F J 2010 J. Phys. Chem. Lett. 1 2428
[20] Castillo A S, Hermo M C, Gonzalez B R, Lorenzo M P, Wang Z M, Kong X T, Govorov A O and Duarte M A C 2016 J. Phys. Chem. C 120 11690
[21] Das S N, Choi J H, Kar J P, Moon K J, Lee T and Myounga J M 2010 Appl. Phys. Lett. 96 092111
[22] Liu Z W, Hou W B, Pavaskar P, Aykol M and Cronin S B 2011 Nano Lett. 11 1111
[23] Zhang P, Wang T and Gong J L 2015 Adv. Mater. 27 5328
[24] Ingram D B and Linic S J 2011 J. Am. Chem. Soc. 133 5202
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[3] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[4] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[5] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[6] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[7] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[8] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[11] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[12] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[13] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[14] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[15] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
No Suggested Reading articles found!