ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers |
Kundong Mo(莫坤东)1, Bo Zhai(翟波)1, Jianfeng Li(李剑峰)1, E Coscelli2, F Poli2, A Cucinotta2, S Selleri2, Chen Wei(韦晨)1, Yong Liu(刘永)1 |
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 Information Engineering Department, University of Parma, Parma 43124, Italy |
|
|
Abstract As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers (SCFs) are designed with shifted zero-dispersion wavelengths (ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schrödinger equation is used to numerically compare supercontinuum (SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge (LWE), the power proportion in the long-wavelength region (PPL), and spectral flatness (SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As2S3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of ~13 μm and PPL up to ~72%. For As2Se3 SCFs, the LWE of 15.5 μm and the highest PPL of ~87% can be achieved in a 10 mm-long fiber with ZDW of 1982 nm pumped at 2000 nm. Although the As2Se3 SCFs can achieve much longer LWE than the As2S3 SCFs, the core diameter of As2Se3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.
|
Received: 05 July 2016
Revised: 09 January 2017
Accepted manuscript online:
|
PACS:
|
42.81.-i
|
(Fiber optics)
|
|
42.81.Bm
|
(Fabrication, cladding, and splicing)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
Fund: Project supported by the National Nature Science Foundation of China (Grant Nos. 61435003, 61377042, 61505024, and 61421002), Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, China (Grant No. 2015GZKF004), Open Found of Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, China (Grant No. SKLSFO2014-07), and Open Fund of Science and Technology on Solid-State Laser Laboratory, China (Grant No. H04010501W2015000604). |
Corresponding Authors:
Bo Zhai
E-mail: cqzhaibo@sina.com
|
Cite this article:
Kundong Mo(莫坤东), Bo Zhai(翟波), Jianfeng Li(李剑峰), E Coscelli, F Poli, A Cucinotta, S Selleri, Chen Wei(韦晨), Yong Liu(刘永) Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers 2017 Chin. Phys. B 26 054216
|
[1] |
Bekman H H P T, Heuvel J C, Putten F J M and Schleijpen R 2004 Proc. SPIE 56 27
|
[2] |
Mukherjee A, der Porten S V and Patel C K N 2010 Appl. Opt. 49 2072
|
[3] |
Thorpe M J, Hudson D D, Moll K D, Lasri J and Ye J 2007 Opt. Lett. 32 307
|
[4] |
Paluszkiewicz C, Kwiatek W M, Banas A, Kisiel A, Marcelli A and Piccinini A 2007 Vib. Spectrosc. 43 237
|
[5] |
Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 584
|
[6] |
Dudley J M, Gentry G and Coen S 2006 Rev. Mod. Phys. 78 1135
|
[7] |
Izawa T, Shibata N and Takeda A 1977 Appl. Phys. Lett. 31 33
|
[8] |
Vogel EM, Weber M J and Krol D M 1991 Phys. Chem. Glasses 32 231
|
[9] |
Fujino S and Morinaga K 1997 J. Non-Cryst. Solids 222 316
|
[10] |
Savelii I, Mouawad O, Fatome J, Kibler B, Désévédavy F, Gadret G, Jules J C, Bony P Y, Kawashima H, Gao W, Kohoutek T, Suzuki T, Ohishi Y and Smektala F 2012 Opt. Express 20 27083
|
[11] |
Domachuk P, Wolchover N A, Cronin-Golomb M, Wang A, George A K, Cordeiro C M B, Knight J C and Omenetto F G 2008 Opt. Express 16 7161
|
[12] |
Liao M, Chaudhari C, Qin G, Yan X, Suzuki T and Ohishi Y 2009 Opt. Express 17 12174
|
[13] |
Qin G, Yan X, Kito C, Liao M, Suzuki T, Mori A and Ohishi Y 2010 J. Appl. Phys. 107 043108
|
[14] |
Qin G, Yan X, Liao M, Mori A, Suzuki T and Ohishi Y 2011 Laser Phys. 21 1115
|
[15] |
France P W, Carter S F, Moore M W and Day C R 1987 Brit. Telecommun. Technol. J. 5 28
|
[16] |
Hagen C L, Walewski J W and Sanders S T 2006 IEEE Photon. Technol. Lett. 18 91
|
[17] |
Xia C, Kumar M, Cheng M, Hegde RS, Islam M N, Galvanauskas A, Winful H G and Terry F L 2007 Opt. Express 15 865
|
[18] |
Qin G, Yan X, Kito C, Liao M, Chaudhari C, Suzuki T and Ohishi Y 2009 Opt. Lett. 34 2015
|
[19] |
Qin G, Yan X, Kito C, Liao M, Chaudhari C, Suzuki T and Ohishi Y 2009 App. Phys. Lett. 95 1611031
|
[20] |
Kulkarni O P, Alexander V V, Kumar M, Freeman M J, Islam M N, Terry F L, Neelakandan M and Chan A 2011 J. Opt. Soc. Am. B 28 2486
|
[21] |
Agger C, Petersen C, Dupont S, Steffensen H, Lyngso J K, Thomsen C L, Thogersen J, Keiding S R and Bang O 2012 J. Opt. Soc. Am. B 29 635
|
[22] |
Eckerle M, Kieleck C, Świderski J, Jackson S D, Mazé G and Eichhorn M 2012 Opt. Lett. 37 512
|
[23] |
Heidt A M, Price J H V, Baskiotis C, Feehan J S, Li Z, Alam S U and Richardson D J 2013 Opt. Express 21 24281
|
[24] |
Xia C, Xu Z, Islam M N, Terry F L, Freeman M J, Zakel A and Mauricio J 2009 IEEE J. Sel. Top. Quantum Electron 15 422
|
[25] |
Yang W, Zhang B, Xue G, Yin K and Hou J 2014 Opt. Lett. 39 1849
|
[26] |
Liu K, Liu J, Shi H-X, Tan F-Z, and Wang P 2014 Opt. Express 22 24384
|
[27] |
Jean-Christophe G, Vincent F, Jean-yves C, Samuel P, Marcel P, Real V and Martin B 2016 Opt. Lett. 41 1756
|
[28] |
Churbanov M F 1992 J. Non-Cryst. Solids 140 324
|
[29] |
Sanghera J S, Nguyen V Q, Pureza P C, Kung F H, Miklos R and Aggarwal I D 1994 J. Lightwave Tech. 12 737
|
[30] |
Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Spälter S, Slusher R E, Cheong S W, Sanghera J S and Aggarwal I D 2000 Opt. Lett. 25 254
|
[31] |
Harbold J M, Ilday F Ö and Wise F W 2002 Opt. Lett. 27 119
|
[32] |
Petersen C R, Moller U, Kubat I, Zhou B B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N and Tang Z Q 2014 Nat. Photon. 8 830
|
[33] |
Cheng T, Nagasaka K, Tuan T H, Xue X, Atsumoto M M, Tezuka H, Suzuki T and Ohishi Y 2016 Opt. Lett. 41 2117
|
[34] |
Hu J, Menyuk C R, Shaw L B, Sanghera J S and Aggarwal I D 2013 Opt. Commun. 293 116
|
[35] |
Al-Kadry A, Amraoui M El, Messaddeq Y and Rochette M 2014 Opt. Express 22 31131
|
[36] |
Cheng T, Kanou Y, Xue X, Deng D, Matsumoto M, Misumi T, Suzuki T and Ohishi Y 2014 Opt. Express 22 23019
|
[37] |
Kubat I, Petersen C R, Moller U V, Seddon A, Benson T, Brilland L, Mechin D, Moselund P M and Bang O 2014 Opt. Express 22 3959
|
[38] |
Wei C, Zhu X, Norwood R A, Song F and Peyghambarian N 2013 Opt. Express 21 29488
|
[39] |
Saini T S, Kumar A and Sinha R K 2015 J. Lightwave Tech. 33 3914
|
[40] |
Mouawad O, Picot-Clemente J, Amrani F, Strutynski C, Fatome J, Kibler B, Desevedavy F, Gadret G, Jules J C, Deng D, OhishiY and Smektala F 2014 Opt. Lett. 39 2684
|
[41] |
Moller U, Yu Y, Kubat I, Petersen C R, Gai X, Brilland L, Mechin D, Caillaud C, Troles J, Luther-Davies Band Bang O 2015 Opt. Express 23 3282
|
[42] |
Laegsgaard J 2007 Opt. Express 15 16110
|
[43] |
Kibler J M D B and Coen S 2005 Appl. Phys. B 81 337
|
[44] |
Hult J 2007 J. Lightwave Tech. 25 3770
|
[45] |
El-Amraoui M, Fatome J, Jules J C, Kibler B, Gadret G, Fortier C, Smektala F, Skripatchev I, Polacchini C F, Messaddeq Y, Troles J, Brilland L, Szpulak M and Renversez G 2010 Opt. Express 18 4547
|
[46] |
Gao W, Liao M, Yan X, Kito C, Kohoutek T, Suzuki T, El-Amraoui M, Jules J, Gadret G, Désévédavy F, Smektala F and Ohishi Y 2011 Appl. Phys. Express 4 102601
|
[47] |
Klocek P 1991 Handbook of Infrared Optical Materials (Marcel: Dekker)
|
[48] |
Poli F, Cucinotta A and Selleri S 2007 Photonic Crystal Fibers Properties and Applications (Dordrecht: Springer Series in Material Science)
|
[49] |
Coscelli E, Poli F, Li J, Cucinotta A and Selleri S 2015 IEEE Photonics Journal 7 1
|
[50] |
Shiryaev V S and Churbanow M F 2013 J. Non-Cryst. Solids 377 225
|
[51] |
Gao W, El-Amraoui M, Liao M, Kawashima H, Duan Z, Deng D, Cheng T, Suzuki T, Messaddeq Y and Ohishi Y 2013 Opt. Express 21 9573
|
[52] |
Yu Y, Gai X, Wang T, Ma P, Wang R, Yang Z, Choi D Y, Madden S and Luther-Davies B 2013 Optical Materials Express 3 1075
|
[53] |
Salem A B, Cherif R, Zghal M and Electromagnet A 2011 Raman Response of a Highly Nonlinear As2Se3-based Chalcogenide Photonic Crystal Fiber (Marrakesh: Piers 2011 Progress in Electromagnetics Research Symposium) p. 1256
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|