ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber |
Jinmei Yao(姚金妹)1, Bin Zhang(张斌)1,2,3, Jing Hou(侯静)1,2,3 |
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China;
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China |
|
|
Abstract We demonstrate efficient supercontinuum generation extending into mid-infrared spectral range by pumping a two-mode As2S3 fiber in the normal dispersion regime. The As2S3 fiber is fusion spliced to the pigtail of a near-infrared supercontinuum pump source with ultra-low splicing loss of 0.125 dB, which enables a monolithic all-fiber mid-infrared supercontinuum source. By two-mode excitation and mixed-mode cascaded stimulated Raman scattering, a supercontinuum spanning from 1.8 μm to 4.2 μm is obtained. Over 70% of the supercontinuum power is converted to wavelengths beyond 2.4 μm. This is the first experimental report with respect to the multimode mid-infrared supercontinuum generation in a step-index two-mode chalcogenide fiber.
|
Received: 14 December 2018
Revised: 11 February 2019
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.81.-i
|
(Fiber optics)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61435009, 61235008, and 61405254). |
Corresponding Authors:
Bin Zhang
E-mail: nudtzhb@163.com
|
Cite this article:
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静) Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber 2019 Chin. Phys. B 28 064205
|
[1] |
Sergeeva E, Chang E W, Mattsson L, Kirillin M, Su R and Yun S H 2014 Opt. Express 22 15804
|
[2] |
Kaminski C F, Watt R S, Elder A D, Frank J H and Hult J 2008 Appl. Phys. B 92 367
|
[3] |
Seddon A B, Benson T M, Sujecki S, et al. 2016 Proc. SPIE 9703
|
[4] |
Seddon A B 2013 Phys. Status Solidi 250 1020
|
[5] |
Sanghera J S and Aggarwal I D 1999 J. Non-Cryst. Solids 256-257 6
|
[6] |
Swiderski J 2014 Prog. Quantum Electron. 38 189
|
[7] |
Yang Wei-Qiang Z B, Hou J, Yin Ke, Liu Z J 2014 Chin. Phys. B 23 054208
|
[8] |
Yin K, Zhang B, Yang L and Hou J 2017 Opt. Lett. 42 2334
|
[9] |
Kedenburg S, Strutynski C, Kibler B, Froidevaux P, Désévédavy F, Gadret G, Jules J C, Steinle T, Mörz F, Steinmann A, Giessen H and Smektala F 2017 J. Opt. Soc. Am. B 34 601
|
[10] |
Ebendorff-Heidepriem H 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, 6 July, 2014, Melbourne, Australia, pp. 627-629
|
[11] |
Xiao-Yu Zhang F F C, Zhang X H and Wei J 2018 Chin. Phys. B 27 084208
|
[12] |
Kubat I and Bang O 2016 Opt. Express 24 2513
|
[13] |
Millot G, Pitois S, Dinda P T and Haelterman M 1997 Opt. Lett. 22 1686
|
[14] |
Lesvigne C, Couderc V, Tonello A, Leproux P, Barthélémy A, Lacroix S, Druon F, Blandin P, Hanna M and Georges P 2007 Opt. Lett. 32 2173
|
[15] |
Liu T, Chen S, Zhang B, Qi X, Liu W and Hou J 2014 Appl. Phys. Express 7 062502
|
[16] |
Chiang K S 1992 Opt. Lett. 17 352
|
[17] |
Vidne Y and Rosenbluh M 2005 Opt. Express 13 9721
|
[18] |
Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J and Coen S 2002 J. Opt. Soc. Am. B 19 765
|
[19] |
Shavrin I, Novotny S and Ludvigsen H 2013 Opt. Express 21 32141
|
[20] |
Wright L G, Christodoulides D N and Wise F W 2015 Nat. Photon. 9 306
|
[21] |
Krupa K, Louot C, Couderc V, Fabert M, Guenard R, Shalaby B M, Tonello A, Pagnoux D, Leproux P and Bendahmane A 2016 Opt. Lett. 41 5785
|
[22] |
Lopez-Galmiche G, Sanjabi E Z, Eftekhar M A, Antonio L J, Wright L G, Wise F, Christodoulides D and Amezcua C R 2016 Opt. Lett. 41 2553
|
[23] |
Ramsay J, Dupont S, Johansen M, Rishoj L, Rottwitt K, Moselund P M and Keiding S R 2013 Opt. Express 21 10764
|
[24] |
Chen L, Gao W, Chen L, Wang P, Ni C, Chen X, Zhou Y, Zhang W, Hu J, Liao M, Suzuki T and Ohishi Y 2018 Appl. Opt. 57 382
|
[25] |
Yin K, Zhang B, Yao J, Yang L, Chen S and Hou J 2016 Opt. Lett. 41 946
|
[26] |
Rajesh T, Gattass R R, Vinh N, Geoff C, Dan G, Woohong K, L Brandon S and Sanghera J S 2015 Opt. Lett. 40 5074
|
[27] |
Zheng Z J, Ouyang D Q, Zhao J Q, Ruan S C, Yu J, Guo C Y and Wang J Z 2015 Chin. Phys. Lett. 32 114206
|
[28] |
Yao J, Zhang B, Yin K, Yang L, Hou J and Lu Q 2016 Opt. Express 24 14717
|
[29] |
Grosjean T, Courjon D and Spajer M 2002 Opt. Commun. 203 1
|
[30] |
Xiong C, Magi E, Luan F, Tuniz A, Dekker S, Sanghera J S, Shaw L B, Aggarwal I D and Eggleton B J 2009 Appl. Opt. 48 5467
|
[31] |
Shiryaev V S and Churbanov M F 2013 J. Non·Cryst. Solids 377 225
|
[32] |
Xing S, Kharitonov S, Hu J and Brés C S 2018 Opt. Lett. 43 1443
|
[33] |
Lotz M R, Petersen C R, Markos C, Bang O, Jakobsen M H and Taboryski R 2018 Optica 5 557
|
[34] |
Sincore A, Cook J, Tan F, El Halawany A, Riggins A, McDaniel S, Cook G, Martyshkin D V, Fedorov V V, Mirov S B, Shah L, Abouraddy A F, Richardson M C and Schepler K L 2018 Opt. Express 26 7313
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|