Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064205    DOI: 10.1088/1674-1056/28/6/064205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber

Jinmei Yao(姚金妹)1, Bin Zhang(张斌)1,2,3, Jing Hou(侯静)1,2,3
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China;
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
Abstract  

We demonstrate efficient supercontinuum generation extending into mid-infrared spectral range by pumping a two-mode As2S3 fiber in the normal dispersion regime. The As2S3 fiber is fusion spliced to the pigtail of a near-infrared supercontinuum pump source with ultra-low splicing loss of 0.125 dB, which enables a monolithic all-fiber mid-infrared supercontinuum source. By two-mode excitation and mixed-mode cascaded stimulated Raman scattering, a supercontinuum spanning from 1.8 μm to 4.2 μm is obtained. Over 70% of the supercontinuum power is converted to wavelengths beyond 2.4 μm. This is the first experimental report with respect to the multimode mid-infrared supercontinuum generation in a step-index two-mode chalcogenide fiber.

Keywords:  supercontinuum generation      infrared lasers      fiber lasers      nonlinear  
Received:  14 December 2018      Revised:  11 February 2019      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.81.-i (Fiber optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61435009, 61235008, and 61405254).

Corresponding Authors:  Bin Zhang     E-mail:  nudtzhb@163.com

Cite this article: 

Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静) Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber 2019 Chin. Phys. B 28 064205

[1] Sergeeva E, Chang E W, Mattsson L, Kirillin M, Su R and Yun S H 2014 Opt. Express 22 15804
[2] Kaminski C F, Watt R S, Elder A D, Frank J H and Hult J 2008 Appl. Phys. B 92 367
[3] Seddon A B, Benson T M, Sujecki S, et al. 2016 Proc. SPIE 9703
[4] Seddon A B 2013 Phys. Status Solidi 250 1020
[5] Sanghera J S and Aggarwal I D 1999 J. Non-Cryst. Solids 256-257 6
[6] Swiderski J 2014 Prog. Quantum Electron. 38 189
[7] Yang Wei-Qiang Z B, Hou J, Yin Ke, Liu Z J 2014 Chin. Phys. B 23 054208
[8] Yin K, Zhang B, Yang L and Hou J 2017 Opt. Lett. 42 2334
[9] Kedenburg S, Strutynski C, Kibler B, Froidevaux P, Désévédavy F, Gadret G, Jules J C, Steinle T, Mörz F, Steinmann A, Giessen H and Smektala F 2017 J. Opt. Soc. Am. B 34 601
[10] Ebendorff-Heidepriem H 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology, 6 July, 2014, Melbourne, Australia, pp. 627-629
[11] Xiao-Yu Zhang F F C, Zhang X H and Wei J 2018 Chin. Phys. B 27 084208
[12] Kubat I and Bang O 2016 Opt. Express 24 2513
[13] Millot G, Pitois S, Dinda P T and Haelterman M 1997 Opt. Lett. 22 1686
[14] Lesvigne C, Couderc V, Tonello A, Leproux P, Barthélémy A, Lacroix S, Druon F, Blandin P, Hanna M and Georges P 2007 Opt. Lett. 32 2173
[15] Liu T, Chen S, Zhang B, Qi X, Liu W and Hou J 2014 Appl. Phys. Express 7 062502
[16] Chiang K S 1992 Opt. Lett. 17 352
[17] Vidne Y and Rosenbluh M 2005 Opt. Express 13 9721
[18] Dudley J M, Provino L, Grossard N, Maillotte H, Windeler R S, Eggleton B J and Coen S 2002 J. Opt. Soc. Am. B 19 765
[19] Shavrin I, Novotny S and Ludvigsen H 2013 Opt. Express 21 32141
[20] Wright L G, Christodoulides D N and Wise F W 2015 Nat. Photon. 9 306
[21] Krupa K, Louot C, Couderc V, Fabert M, Guenard R, Shalaby B M, Tonello A, Pagnoux D, Leproux P and Bendahmane A 2016 Opt. Lett. 41 5785
[22] Lopez-Galmiche G, Sanjabi E Z, Eftekhar M A, Antonio L J, Wright L G, Wise F, Christodoulides D and Amezcua C R 2016 Opt. Lett. 41 2553
[23] Ramsay J, Dupont S, Johansen M, Rishoj L, Rottwitt K, Moselund P M and Keiding S R 2013 Opt. Express 21 10764
[24] Chen L, Gao W, Chen L, Wang P, Ni C, Chen X, Zhou Y, Zhang W, Hu J, Liao M, Suzuki T and Ohishi Y 2018 Appl. Opt. 57 382
[25] Yin K, Zhang B, Yao J, Yang L, Chen S and Hou J 2016 Opt. Lett. 41 946
[26] Rajesh T, Gattass R R, Vinh N, Geoff C, Dan G, Woohong K, L Brandon S and Sanghera J S 2015 Opt. Lett. 40 5074
[27] Zheng Z J, Ouyang D Q, Zhao J Q, Ruan S C, Yu J, Guo C Y and Wang J Z 2015 Chin. Phys. Lett. 32 114206
[28] Yao J, Zhang B, Yin K, Yang L, Hou J and Lu Q 2016 Opt. Express 24 14717
[29] Grosjean T, Courjon D and Spajer M 2002 Opt. Commun. 203 1
[30] Xiong C, Magi E, Luan F, Tuniz A, Dekker S, Sanghera J S, Shaw L B, Aggarwal I D and Eggleton B J 2009 Appl. Opt. 48 5467
[31] Shiryaev V S and Churbanov M F 2013 J. Non·Cryst. Solids 377 225
[32] Xing S, Kharitonov S, Hu J and Brés C S 2018 Opt. Lett. 43 1443
[33] Lotz M R, Petersen C R, Markos C, Bang O, Jakobsen M H and Taboryski R 2018 Optica 5 557
[34] Sincore A, Cook J, Tan F, El Halawany A, Riggins A, McDaniel S, Cook G, Martyshkin D V, Fedorov V V, Mirov S B, Shah L, Abouraddy A F, Richardson M C and Schepler K L 2018 Opt. Express 26 7313
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[6] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[7] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[8] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[9] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[10] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[11] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[12] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[13] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
No Suggested Reading articles found!