ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
High stability supercontinuum generation in lead silicate SF57 photonic crystal fibers |
Zhu Xing-Ping (朱星平)a, Li Shu-Guang (李曙光)a, Du Ying (杜颖)a, Han Ying (韩颖)a, Zhang Wen-Qi (张闻起)b, Ruan Yin-Lan (阮银兰)b, Heike Ebendorff-Heidepriemb, Shahraam Afsharb, Tanya M. Monrob |
a Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China; b The Institute for Photonics & Advanced Sensing, School of Chemistry & Physics, The University of Adelaide, Adelaide SA 5005, Australia |
|
|
Abstract We report supercontinuum (SC) generation in a lead silicate SF57 photonic crystal fiber by using a 1550 nm pump source. The effective nonlinear coefficient of the SF57 fiber is simulated to be 111.5 W-1·km-1 at 1550 nm. The fiber also shows ultraflat dispersion from 1700 nm to 2100 nm. Our results reveal that with increase of the average power of the incident pulse from 10 mW to 90 mW, the SC of the SF57 photonic crystal fiber is generated from 1300 nm to 1900 nm with high stability and without significant change in spectral broadening.
|
Received: 14 May 2012
Revised: 20 July 2012
Accepted manuscript online:
|
PACS:
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178026 and 60978028), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091333110010), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035), and the NCRIS, Australia. |
Corresponding Authors:
Li Shu-Guang
E-mail: shuguangli@ysu.edu.cn
|
Cite this article:
Zhu Xing-Ping (朱星平), Li Shu-Guang (李曙光), Du Ying (杜颖), Han Ying (韩颖), Zhang Wen-Qi (张闻起), Ruan Yin-Lan (阮银兰), Heike Ebendorff-Heidepriem, Shahraam Afshar, Tanya M. Monro High stability supercontinuum generation in lead silicate SF57 photonic crystal fibers 2013 Chin. Phys. B 22 014215
|
[1] |
Russell P S J 2006 Journal of Lightwave Technology 24 4729
|
[2] |
Yuan J H, Sang X Z, Yu C X, Xin X J, Shen X W, Zhang J L, Zhou G Y, Li S G and Hou L T 2011 Chin. Phys. B 20 54210
|
[3] |
Yan F P, Wang L, Mao X Q, Gong T R, Liu P, Tao P L and Peng W J 2010 Opt. Commun. 283 3658
|
[4] |
Jia Y Q, Yan P G, Lü K S, Zhang T Q and Zhu X N 2006 Acta Phys. Sin. 55 1809 (in Chinese)
|
[5] |
Wang X Y, Li S G, Liu S, Yin G B and Li J S 2012 Chin. Phys. B 21 54220
|
[6] |
Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
|
[7] |
Jin A J, Wang Z F, Hou J, Wang Y B and Jiang Z F 2012 Acta Phys. Sin. 61 124211 (in Chinese)
|
[8] |
Wang X Y, Li S G, Liu S, Zhang L, Yin G B and Feng R P 2011 Acta Phys. Sin. 60 064213 (in Chinese)
|
[9] |
Petropoulos P, Ebendorff-Heidepriem H, Finazzi V, Moore R, Frampton K, Richardson D and Monro T 2003 Opt. Express 11 3568
|
[10] |
Miret J J, Silvestre E and Andrés P 2009 Opt. Express 17 9197
|
[11] |
Holzwarth R, Udem T, HAnsch T W, Knight J C, Wadsworth W J and Russell P S J 2000 Phys. Rev. Lett. 85 2264
|
[12] |
Washburn B, Fox R, Newbury N, Nicholson J, Feder K, Westbrook P and Jorgensen C 2004 Opt. Express 12 4999
|
[13] |
Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler R S 2001 Opt. Lett. 26 608
|
[14] |
Gu X, Xu L, Kimmel M, Zeek E, O'Shea P, Shreenath A P, Trebino R and Windeler R S 2002 Opt. Lett. 27 1174
|
[15] |
Hori T, Takayanagi J, Nishizawa N and Goto T 2004 Opt. Express 12 317
|
[16] |
Chen Y Z, Li Y Z, Qu G and Xu W C 2006 Acta Phys. Sin. 55 717 (in Chinese)
|
[17] |
Omenetto F G, Wolchover N A, Wehner M R, Ross M, Efimov A, Taylor A J, Kumar V V R K, George A K, Knight J C, Joly N Y and Russell P S J 2006 Opt. Express 14 4928
|
[18] |
Hundertmark H, Kracht D, Wandt D, Fallnich C, Kumar V V R K, George A, Knight J and Russell P 2003 Opt. Express 11 3196
|
[19] |
Li S G, Zheng Y and Yin G B 2009 Sci. China Ser. G 39 1559
|
[20] |
Zhang W Q, Afshar V S and Monro T M 2009 Opt. Express 17 19311
|
[21] |
Schott Optical Glass Catalogue 2007 http://www.schott.com.
|
[22] |
Kalashnikov V L, Sorokin E and Sorokina I T 2007 Appl. Phys. B: Lasers and Optics 87 37
|
[23] |
Agrawal G P 2001 Nonlinear Fiber Optics (3rd edn.) (San Diego: Academic Press) pp. 39-45
|
[24] |
KArtner F X, Dougherty D J, Haus H A and Ippen E P 1994 J. Opt. Soc. Am. B 11 1267
|
[25] |
Leong J Y Y, Petropoulos P, Price J H V, Ebendorff-Heidepriem H, Asimakis S, Moore R C, Frampton K E, Finazzi V, Feng X, Monro T M and Richardson D J 2006 Journal of Lightwave Technology 24 183
|
[26] |
Tomlinson W J, Stolen R H and Shank C V 1984 J. Opt. Soc. Am. B 1 139
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|