ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich |
Shuai Zhao(赵帅)1, Fangrong Hu(胡放荣)1, Xinlong Xu(徐新龙)2, Mingzhu Jiang(江明珠)1, Wentao Zhang(张文涛)1, Shan Yin(银珊)1, Wenying Jiang(姜文英)1 |
1 Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin 541004, China; 2 Nanobiophotonic Center, State Key Laboratory Incubation Base of Photoelectric Technology and Functional Materials, and Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China |
|
|
Abstract We experimentally demonstrate an electrically triggered terahertz (THz) dual-band tunable band-pass filter based on Si3N4-VO2-Si3N4 sandwich-structured hybrid metamaterials. The insulator-metal phase transition of VO2 film is induced by the Joule thermal effect of the top metal layer. The finite-integration-time-domain (FITD) method and finite element method (FEM) are used for numerical simulations. The sample is fabricated using a surface micromachining process, and characterized by a THz time-domain-spectrometer (TDS). When the bias current is 0.225 A, the intensity modulation depths at two central frequencies of 0.56 THz and 0.91 THz are about 81.7% and 81.3%, respectively. This novel design can achieve dynamically electric-thermo-optic modulation in the THz region, and has potential applications in the fields of THz communications, imaging, sensing, and astronomy exploration.
|
Received: 21 December 2018
Revised: 17 January 2019
Accepted manuscript online:
|
PACS:
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
84.30.Vn
|
(Filters)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574059, 61565004, and 11774288), the National Technology Major Special Project, China (Grant No. 2017ZX02101007-003), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFDA139039 and 2017GXNSFBA198116), the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument, China (Grant No. YQ16101), and the Innovation Project of Guangxi Graduate Education, China (Grant Nos. 2018YJCX70, 2018YJCX67, and 2018YJCX74). |
Corresponding Authors:
Fangrong Hu
E-mail: hufangrong@sina.com
|
Cite this article:
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英) Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich 2019 Chin. Phys. B 28 054203
|
[1] |
Shelby R A, Smith D R and Schultz S 2001 Science 292 77
|
[2] |
Kante B, de Lustrac A, Lourtioz J M and Burokur S N 2008 Opt. Express 16 9191
|
[3] |
Silveirinha M G, Medeiros C R, Fernandes C A and Costa J R 2010 Phys. Rev. B 81 033101
|
[4] |
Olivares I, Sanchez L, Parra J, Larrea R, Griol A, Menghini M, Homm P, Jang L W, van Bilzen B, Seo J W, Locquet J P and Sanchis P 2018 Opt. Express 26 12387
|
[5] |
Song Z Y, Wang K, Li J W and Liu Q H 2018 Opt. Express 26 7148
|
[6] |
Shi Z W, Cao X X, Wen Q Y, Wen T L, Yang Q H, Chen Z, Shi W S and Zhang H W 2018 Adv. Opt. Mater. 6 1700620
|
[7] |
Liu X L, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
|
[8] |
Lan F, Yang Z Q, Qi L M, Gao X and Shi Z J 2014 Opt. Lett. 39 1709
|
[9] |
Chiang Y J, Yang C S, Yang Y H, Pan C L and Yen T J 2011 Appl. Phys. Lett. 99 191909
|
[10] |
Deng L, Li D Z, Liu Z L, Meng Y H, Guo X N and Tian Y H 2017 Chin. Phys. B 26 024209
|
[11] |
Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
|
[12] |
Hu F R, Xu X, Li P, Xu X L and Wang Y 2017 Chin. Phys. B 26 074219
|
[13] |
Zhu Y H, Vegesna S, Zhao Y, Kuryatkov V, Holtz M, Fan Z Y, Saed M and Bernussi A A 2013 Opt. Lett. 38 2382
|
[14] |
Park D J, Shin J H, Park K H and Ryu H C 2018 Opt. Express 26 17397
|
[15] |
Hogue M N F, Karaoglan-Bebek G, Holtz M, Bernussi A A and Fan Z Y 2015 Opt. Commun. 350 309
|
[16] |
Pashkin A, Kuebler C, Ehrke H, Lopez R, Halabica A, Haglund R F Jr., Huber R and Leitenstorfer A 2011 Phys. Rev. B 83 195120
|
[17] |
Eaton M, Catellani A and Calzolari A 2018 Opt. Express 26 5342
|
[18] |
Sanphuang V, Ghalichechian N, Nahar N K and Volakis J L 2016 IEEE Trans. Terahertz Sci. Technol. 6 583
|
[19] |
Zhou G C, Dai P H, Wu J B, Jin B B, Wen Q Y, Zhu G H, Shen Z, Zhang C H, Kang L, Xu W W, Chen J and Wu P H 2017 Opt. Express 25 17322
|
[20] |
Han C R, Parrott E P J, Humbert G, Crunteanu A and Pickwell-MacPherson E 2017 Sci. Rep. 7 12725
|
[21] |
Wang S X, Kang L and Werner D H 2017 Sci. Rep. 7 4326
|
[22] |
Zhu Y H, Zhao Y, Holtz M, Fan Z and Bernussi A A 2012 J. Opt. Soc. Am. B: Opt. Phys. 29 2373
|
[23] |
Hu F R, Zhang L H, Xu X L, Wang Y E, Zou T B and Zhang W T 2015 Opt. Quan. Electron. 47 2867
|
[24] |
Azad A K, Taylor A J, Smirnova E and O'Hara J F 2008 Appl. Phys. Lett. 92 011119
|
[25] |
COMSOL Inc., https://www.comsol.com [2019-01-17]
|
[26] |
Haynes W M 2014 CRC Handbook of Chemistry and Physics (Boca Raton: CRC Press)
|
[27] |
Gopalakrishnan G, Ruzmetov D and Ramanathan S 2009 J. Mater. Sci. 44 5345
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|