Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 050501    DOI: 10.1088/1674-1056/28/5/050501
GENERAL Prev   Next  

Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control

Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞)
School of Mathematics and Computing Science, Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  We introduce a new consensus pattern, named a successive lag cluster consensus (SLCC), which is a generalized pattern of successive lag consensus (SLC). By applying delay-dependent impulsive control, the SLCC of first-order and second-order multi-agent systems is discussed. Furthermore, based on graph theory and stability theory, some sufficient conditions for the stability of SLCC on multi-agent systems are obtained. Finally, several numerical examples are given to verify the correctness of our theoretical results.
Keywords:  successive lag cluster consensus      impulsive control      multi-agent systems  
Received:  01 December 2018      Revised:  29 January 2019      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.-k (Complex systems)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61663006 and 11661026), the Guangxi Natural Science Foundation Program, China (Grant No. 2015GXNSFBB139002), the Guangxi Key Laboratory of Cryptography and Information Security, China (Grant No. GCIS201612), and the Innovation Project of GUET Graduate Education, China (Grant No. 2018YJCX57).
Corresponding Authors:  Ke-Zan Li     E-mail:  kezanli@163.com

Cite this article: 

Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞) Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control 2019 Chin. Phys. B 28 050501

[1] Paranjape A A, Chung A J, Kim K and Shim D H 2018 IEEE Trans. Robot. 34 901
[2] Desai J P, Ostrowski J P and Kumar V 2011 IEEE Trans. Robot. Automat. 17 905
[3] Wu Z W, Sun J S and Wang X M 2018 Chin. Phys. B 27 060202
[4] Schnitzler A and Gross J 2005 Nat. Rev. Neurosci. 5 285
[5] Kiselev V Y, Kirschner K, Schaub M T, Andrews T, Yiu A, Chandra T, Natarajan K N, Reik W, Barahona M, Green A R and Hemberg M 2017 Nat. Methods 14 483
[6] Vicsek T, Czirók A, Jacob E B, Cohen I and Shocher O 1995 Phys. Rev. Lett. 75 1226
[7] Jadbabaie A, Lin J and Morse A S 2003 IEEE Trans. Autom. control 48 988
[8] Ren W and Beard R W 2005 IEEE Trans. Autom. control 50 655
[9] Olfatisaber R, Fax J A and Murray R M 2007 Proc. IEEE 95 215
[10] Hu J P and Hong Y G 2007 Physica A 374 853
[11] Xiao F, Wang L, Chen J and Gao Y P 2009 Automatica 45 2605
[12] Feng J W, Yu F F and Zhao Y 2016 Nonlinear Dyn 85 621
[13] Mo L P, Guo S Y and Yu Y G 2018 Chin. Phys. B 27 070504
[14] Wang Y and Ma Z J 2016 Neurocomputing 171 82
[15] Wang Y, Ma Z J, Zheng S and Chen G R 2017 IEEE Trans. Cybern. 47 2203
[16] Li K Z, Yu W W and Ding Y 2015 Nonlinear Dyn. 80 421
[17] Qin J H and Yu C B 2013 Automatica 48 2898
[18] Qin J H, Ma Q C, Zheng W X, Gao H J and Kang Y 2017 IEEE Trans. Autom. control 62 3559
[19] Qin J H, Ma Q C, Gao H J, Shi Y and Kang Y 2017 EEE Trans. Cybern. 47 4122
[20] Wang Y, Ma Z J and Chen G R 2018 J. Frankl. Inst. 355 7335
[21] Wang Y, Li Y X, Ma Z J, Cai G Y and Chen G R 2018 IEEE Trans. Syst. Man Cybern. Syst.
[22] Lu J Q, Daniel W C H and Cao J D 2012 Automatica 46 1215
[23] Wu J S and Jiao L C 2008 Automatica 387 2111
[24] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities In System And Control Theory (Philadelphia PA: SIAM)
[25] Zhang X J, Wei A J and Li K Z 2016 Chin. Phys. B 25 038901
[26] Zhang D, Zhang Y X, Qiu X F, Zhu G H and Li K Z 2018 Acta Phys. Sin. 67 018901 (in Chinese)
[27] Zhang Y X and Li K Z 2019 Nonlinear Dyn.
[28] Yu W W, Chen G R and Cao M 2010 Automatica 46 1089
[29] Guan Z H, Liu Z W, Feng G and Jian M 2012 Automatica 48 1397
[30] Wu W and Chen T P 2009 Physica D 238 355
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[5] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[6] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[7] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[8] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[9] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[10] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[11] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[12] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[13] Cluster synchronization of community network with distributed time delays via impulsive control
Hui Leng(冷卉), Zhao-Yan Wu(吴召艳). Chin. Phys. B, 2016, 25(11): 110501.
[14] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[15] Distributed H control of multi-agent systems with directed networks
Liu Wei (刘伟), Liu Ai-Li (柳爱利), Zhou Shao-Lei (周绍磊). Chin. Phys. B, 2015, 24(9): 090208.
No Suggested Reading articles found!