Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 028103    DOI: 10.1088/1674-1056/28/2/028103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Inclusions in large diamond single crystals at different temperatures of synthesis

Fei Han(韩飞)1, Shang-Sheng Li(李尚升)1, Xue-Fei Jia(贾雪菲)1, Wei-Qin Chen(陈玮琴)1, Tai-Chao Su(宿太超)1, Mei-Hua Hu(胡美华)1, Kun-Peng Yu(于昆鹏)1, Jian-Kang Wang(王健康)1, Yu-Min Wu(吴玉敏)1, Hong-An Ma(马红安)2, Xiao-Peng Jia(贾晓鹏)2
1 School of Materials Science and Engineering, Henan Polytechnic University, Cultivating Base for Key Laboratory of Environment-friendly Inorganic Materials in University of Henan Province, Jiaozuo 454000, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematically. In this paper, large diamond single crystals with different content values of inclusions are synthesized along the (100) surface by the temperature gradient method (TGM) under 5.6 GPa at different temperatures. With the synthetic temperature changing from 1200℃ to 1270℃, the shapes of diamonds change from plate to low tower, to high tower, even to steeple. From the microscopic photographs of the diamond samples, it can be observed that with the shapes of the samples changing at different temperatures, the content values of inclusions in diamonds become zero, a little, much and most, correspondingly. Consequently, with the temperature growing from low to high, the content values of inclusions in crystals increase. The origin of inclusions is explained by the difference in growth rate between diamond crystal and its surface. The content values of inclusions in diamond samples are quantitatively calculated by testing the densities of diamond samples. And the composition and inclusion content are analyzed by energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). From contrasting scanning electron microscopy (SEM) photographs, it can be found that the more the inclusions in diamond, the more imperfect the diamond surface is.
Keywords:  inclusions      large diamond single crystals      high pressure and high temperature  
Received:  06 September 2018      Revised:  28 November 2018      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  61.72.S- (Impurities in crystals)  
  61.05.C- (X-ray diffraction and scattering)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Fund: Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 182300410279), the Key Science and Technology Research Project of Henan Province, China (Grant No. 182102210311), the Key Scientific Research Project in Colleges and Universities of Henan Province, China (Grant No. 18A430017), the Professional Practice Demonstration Base Program for Professional Degree Graduate in Material Engineering of Henan Polytechnic University, China (Grant No. 2016YJD03), and the Fund for the Innovative Research Team (in Science and Technology) in the University of Henan Province, China (Grant No. 19IRTSTHN027).
Corresponding Authors:  Shang-Sheng Li     E-mail:  lishsh@hpu.edu.cn

Cite this article: 

Fei Han(韩飞), Shang-Sheng Li(李尚升), Xue-Fei Jia(贾雪菲), Wei-Qin Chen(陈玮琴), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Kun-Peng Yu(于昆鹏), Jian-Kang Wang(王健康), Yu-Min Wu(吴玉敏), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏) Inclusions in large diamond single crystals at different temperatures of synthesis 2019 Chin. Phys. B 28 028103

[1] Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y and Jia X P 2011 Chin. Phys. B 20 028103
[2] Sumiya H, Toda N and Satoh S 2002 J. Crystal Growth 237-239 1281
[3] Sumiya H, Toda N, Nishibayashi Y and Satoh S 1997 J. Crystal Growth 178 485
[4] Li Y, Jia X P, Shi W, Leng S L, Ma H A, Sun S S, Wang F B, Chen N and Long Y 2014 Int. J. Refract. Met. Hard Mater. 43 147
[5] Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M and Ma H A 2013 Chin. Phys. B 22 014701
[6] Xiao H Y, Jia X P, Zang C Y, Li S S, Tian Y, Zhang Y F, huang G F, Ma L Q and Ma H A 2008 Chin. Phys. Lett. 25 1469
[7] Hu M H, Li S S, Ma H A, Su T C, Li X L, Hu Q and Jia X P 2012 Chin. Phys. B 21 098101
[8] Zhang H, Li S S, Su T C, Hu M H, Li G H, Ma H A and Jia X P 2016 Chin. Phys. B 25 118104
[9] Novikov N V 1999 Diam. Relat. Mater. 8 1427
[10] Zhang H, Li S S, Su T C, Hu M H, Ma H A, Jia X P and Li Y 2017 Chin. Phys. B 26 058102
[11] Yin L W, Li M S, Sun D S and Cui J J 2001 Mater. Lett. 48 21
[12] Zhou L, Jia X P, Ma H A, Zheng Y J and Li Y T 2008 Chin. Phys. B 17 4665
[13] Gong C S, Li S S, Zhang H R, Su T C, Hu M H, Ma H A, Jia X P and Li Y 2017 Int. J. Refract. Met. Hard Mater. 66 116
[14] Langenhorst F, Poirier J P and Forst D J 2004 J. Mater. Sci. 39 1865
[15] Yin L W, Wang N W, Zou Z D, Li M S, Sun D S, Zheng P Z and Yao Z Y 2000 Appl. Phys. A 71 473
[16] Yin L W, Zou Z D, Li M S, Liu Y X, Cui J J and Hao Z Y 2000 Mater. Sci. Eng. A 293 107
[17] Chen L X and Li X Y 2004 J. Gems Gemmol. 6 25 (in Chinese)
[18] Neuser R D, Schertl H P, Logvinova A M and Sobolev N V 2015 Russ. Geol. Geophys. 56 321
[19] Khokhryakov A F and Nechaev D V 2015 Russ. Geol. Geophys. 56 232
[20] Angel R J, Alvaro M, Nestola F and Mazzucchelli M L 2015 Russ. Geol. Geophys. 56 211
[21] Bharuth-Ram K and Hansen M F 2002 Physica B 321 29
[22] Eaton-Magaña S, Ardon T and Zaitsev A M 2017 Diamond Relat. Mater. 71 20
[23] Nestola F, Cerantola V, Milani S, Anzolini C, McCammon C, Novella D, Kupenko I, Chumakov A, Rüffer R and Harris J W 2016 Lithos 265 328
[24] Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Zhang G and Bex P 2002 J. Phys.: Condens. Matter 14 11269
[25] Zhang H, Li S S, Su T C, Hu M H, Zhou Y M, Fan H T, Gong C S, Jia X P, Ma H A and Xiao H Y 2015 Acta Phys. Sin. 64 198103 (in Chinese)
[26] Zhang Y, Dong F X, Wan S Q, Xie X J, Gong L J, Wang Y F and Qiu L X 2011 J. Jilin Univ. Sci. Ed. 49 935 (in Chinese)
[27] Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A and Xiao H Y 2018 Acta Phys. Sin. 67 168101 (in Chinese)
[28] Sun S S, Jia X P, Yan B M, Wang F B, Li Y D, Chen N and Ma H A 2014 Diamond Relat. Mater. 42 21
[29] Agrosí G, Nestola F, Tempesta G, Bruno M, Scandale E and Harris J 2016 Lithos 248-251 153
[30] Moore M, Nailer S G and Wierzchowski W K 2016 Crystals 6 71
[1] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[2] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[3] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[4] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[5] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[6] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[7] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[8] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[9] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[10] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[11] Influence of spherical inclusions on effective thermoelectric properties of thermoelectric composite materials
Wen-Kai Yan(闫文凯), Ai-Bing Zhang(张爱兵), Li-Jun Yi(易利军), Bao-Lin Wang(王保林), Ji Wang(王骥). Chin. Phys. B, 2020, 29(5): 057301.
[12] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[13] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[14] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[15] Distinctive distribution of defects in CdZnTe: In ingots and their effects on the photoelectric properties
Xu Fu(符旭), Fang-Bao Wang(王方宝), Xi-Ran Zuo(左希然), Ze-Jian Wang(王泽剑), Qian-Ru Wang(王倩茹), Ke-Qin Wang(王柯钦), Ling-Yan Xu(徐凌燕), Ya-Dong Xu(徐亚东), Rong-Rong Guo(郭榕榕), Hui Yu(于晖), Wan-Qi Jie(介万奇). Chin. Phys. B, 2018, 27(3): 037302.
No Suggested Reading articles found!