Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 020502    DOI: 10.1088/1674-1056/28/2/020502
GENERAL Prev   Next  

Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor

K Usha1, P A Subha2
1 Department of physics, University of Calicut, Kerala 673635, India;
2 Department of physics, Farook College, University of Calicut, Kerala 673632, India
Abstract  

We analyze the energy aspects of single and coupled Hindmarsh-Rose (HR) neuron models with a quadratic flux controlled memristor. The energy function for HR neuron with memristor has been derived and the dynamics have been analyzed in the presence of various external stimuli. We found that the bursting mode of the system changes with external forcing. The negative feedback in Hamilton energy function effectively stabilizes the chaotic trajectories and controls the phase space. The Lyapunov exponents have been plotted to verify the stabilization of trajectories. The energy aspects during the synchronous dynamics of electrically coupled neurons have been analyzed. As the coupling strength increases, the average energy fluctuates and stabilizes at the point of synchronization. When the neurons are coupled via chemical synapse, the average energy variations show three important regimes:a fluctuating regime corresponding to the desynchronized, a stable region indicating synchronized and a linearly increasing regime corresponding to the amplitude death states have been observed. The synchronization transitions are verified by plotting the transverse Lyapunov exponents. The proposed method has a large number of applications in controlling coupled chaotic systems and in analyzing the energy change during various metabolic processes.

Keywords:  HR model      memristor      Hamilton energy      energy feedback      synchronization  
Received:  02 October 2018      Revised:  19 November 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Corresponding Authors:  P A Subha     E-mail:  pasubha@farookcollege.ac.in

Cite this article: 

K Usha, P A Subha Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor 2019 Chin. Phys. B 28 020502

[1] Torrealdea F J, d'Anjou A, Grana M and Sarasola C 2006 Phys. Rev. E 74 011905
[2] Torrealdea F J, Sarasola C and d'Anjou A 2009 Chaos, Solitons and Fractals 40 60
[3] Sira-Ramirez H and Cruz-Hernandez C 2001 Int. J. Bifur. Chaos 11 1381
[4] Sarasola C, Torrealdea F J, d'Anjou A, Moujahid A and Grana M 2004 Phys. Rev. E 69 011606
[5] Moujahid A, d'Anjou A, Torrealdea F J and Torrealdea F 2011 Chaos, Solitons and Fractals 44 929
[6] Moujahid A, d'Anjou A, Torrealdea F J and Torrealdea F 2011 Phys. Rev. E 83 031912
[7] Gu H 2013 Chaos 23 023126
[8] Pisarchik A N Jaimes-Reategui R and Garcia-Vellisca M A 2018 Chaos 28 033605
[9] Xu Y, Ying H, Jia Y, Ma J and Hayat T 2017 Sci. Rep. 7 43452
[10] Li H, Sun X and Xiao J 2018 Chaos 28 043113
[11] Wang Y, Ma J, Xu Y, Wu F and Zhou P 2017 Int. J. Bifur. Chaos 27 1750030
[12] Perc M and Marhl M 2006 New J. Phys. 8 142
[13] Zambrano S, Marino I P, Seoane J M, Sanjuan M A F, Euzzor S, Geltrude A, Meucci R and Arecchi F T 2010 New J. Phys. 12 053040
[14] Baltanas J P and Casado J M 2002 Phys. Rev. E 65 041915
[15] Wang Y, Wang Z D and Wang W 2000 J. Phys. Soc. Jpn. 69 276
[16] Lindner B, Garcia-Ojalvo J, Neimand A and Schimansky-Geiere L 2004 Phys. Rep. 392 321
[17] Wu F, Wang C, Xu Y and Ma J 2016 Sci. Rep. 6 28
[18] Wang G, Shen Y and Yin Q 2013 Chin. Phys. B 22 050504
[19] Ma J, Zhou P, Ahmad B, Ren G and Wang C 2018 PLOS ONE 0191120 1-21
[20] Ma J, Wu F, Jin W, Zhou P and Hayat T 2017 Chaos 27 053108
[21] Xu F, Zhang J, Fang T, Huang S and Wang M 2018 Nonlinear Dyn. 92 1395
[22] Thottil S K and Ignatius R P 2017 Nonlinear Dyn. 87 1879
[23] Hindmarsh J L and Rose R M 1984 Proc. R. Soc. Lond. B 221 87
[24] Rose R M and Hindmarsh J L 1985 Proc. Roy. Soc. Lond. B 225 161
[25] Storace M, Linaro D and Enno de Lange 2008 Chaos 18 033128
[26] Usha K, Subha P A and Chitra R N 2018 Chaos, Solitons and Fractals 108 25
[27] Usha K and Subha P A 2018 Int. J. Mod. Phys. C 29 1850023
[28] Guo Q, Gu W and Tao Z 2015 Adv. Eng. Res. 1461
[29] Lv M, Wang C, Ren G, Ma J and Song X 2016 Nonlinear Dyn. 85 1479
[30] Juang J and Liang Y H 2015 Chaos 24 013110
[31] Song X L, Jin W Y and Ma J 2015 Chin. Phys. B 24 128710
[32] Djeundam S R D, Yamapi R, Kofane T C and Azizalaoui M A 2013 Chaos 23 033125
[33] Somers D and Kopell N 1993 Biol. Cybern. 68 393
[34] Wu K, Aoki C, Elste A, Rogalski-Wilk A A and Siekevitz P 1997 Proc. Natl. Acad. Sci. USA 94 13273
[35] Siekevitz P 2004 Science 306 410
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[8] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[9] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[10] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[11] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[12] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[13] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[14] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[15] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
No Suggested Reading articles found!