Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 020501    DOI: 10.1088/1674-1056/28/2/020501
GENERAL Prev   Next  

Nodes and layers PageRank centrality for multilayer networks

Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越)
Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  In this paper, we propose a new centrality algorithm that can simultaneously rank the nodes and layers of multilayer networks, referred to as the MRFNL centrality. The centrality of nodes and layers are obtained by developing a novel iterative algorithm for computing a set of tensor equations. Under some conditions, the existence and uniqueness of this centrality were proven by applying the Brouwer fixed point theorem. Furthermore, the convergence of the proposed iterative algorithm was established. Finally, numerical experiments on a simple multilayer network and two real-world multilayer networks (i.e., Pierre Auger Collaboration and European Air Transportation Networks) are proposed to illustrate the effectiveness of the proposed algorithm and to compare it to other existing centrality measures.
Keywords:  multilayer networks      PageRank centrality      random walks      transition probability tensors  
Received:  20 September 2018      Revised:  11 November 2018      Accepted manuscript online: 
PACS:  05.40.Fb (Random walks and Levy flights)  
  89.75.Hc (Networks and genealogical trees)  
  89.75.-k (Complex systems)  
Fund: Project supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. AE91313/001/016), the National Natural Science Foundation of China (Grant No. 11701097), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB212055).
Corresponding Authors:  Kun Zhang     E-mail:  zhangkun@njust.edu.cn

Cite this article: 

Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越) Nodes and layers PageRank centrality for multilayer networks 2019 Chin. Phys. B 28 020501

[1] Boccaletti S, Latora V, Moreno Y, Chavezf M and Hwang D U 2007 Phys. Rep. 424 175
[2] Gao S, Ma J, Chen Z, Wang G and Xing C 2014 Physica A 403 130
[3] FFreeman L C 2008 Soc. Net. 1 215
[4] Newman M E J 2005 Soc. Net. 27 39
[5] Sabidussi G 1966 Psychometrika 31 581
[6] Bonacich P 1987 Am. J. Soc. 92 1170
[7] T Agryzkov, Oliver J L, L Tortosa and Vicent J F 2012 Appl. Math. Comput. 219 2186
[8] Duan J M, Shang M S, Cai S M and Zhang Y X 2015 Acta Phys. Sin. 64 200501 (in Chinese)
[9] Kleinberg J M 1999 J. Acm. 46 604
[10] Callaghan T, Mucha P J and Porter M A 2007 Am. Math. Mon. 114 761
[11] Chartier T P, Kreutzer E, Langville A N and Pedings K E 2011 Siam. J. Sci. Comput. 33 1077
[12] Saavedra S, Powers S, McCotter T, Porter M A and Mucha P J 2010 Physica A 389 1131
[13] Jeong H, Mason S P, Barabasi A L and Oltvai Z N 2001 Nature 411 41
[14] Lü L Y, Medo M, Yeung C H, Zhang Y C, Zhang Z K and Zhou T 2012 Phys. Rep. 519 1
[15] Domenico M D, SoléRibalta A, Omodei E, Gómez S and Arenas A 2015 Nat. Commun. 6 6868
[16] Pedroche F, Romance M and Criado R 2016 Chaos 26 065301
[17] Li Y Y and Zou X F 2016 Sci. China- Inform. Sci. 59 070102
[18] Ng M K, Li X and Ye Y 2011 Proceedings of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 21-24, New York, USA, p. 1217
[19] Tudisco F, Arrigo F and Gautier A 2018 Siam. J. Appl. Math. 78 853
[20] Rahmede C, Iacovacci J, Arenas A and Bianconi G 2017 arXiv: 1703.05833 [CST]
[21] Ding C and Li K 2018 Neurocomputing 312 263
[22] Wang D J and Zou X F 2017 Appl. Math. Model. 54 46
[23] Valdeolivas A, Tichit L, Navarro C, Perrin S, Odelin G, Levy N, Cau P, Remy E and Baudot A 2017 Bioinformatics
[24] Boccaletti S, Bianconi G, Criado R, Genio C I D, Gómez G J, Romance M, Sendiña N I, Wang Z and Zanin M 2014 Phys. Rep. 544 1
[25] Chang K C, Pearson K and Zhang T 2008 Commun. Math. Sci. 6 507
[26] Kellogg R 1976 P. Am. Math. Soc. 60 207
[27] Domenico M D, Lancichinetti A, Arenas A and Rosvall M 2014 Phys. Rev. X 5 011027
[28] Cardillo A, Gómezgardeñes J, Zanin M, Romance M, Papo D, Pozo F D and Boccaletti S 2013 Sci. Rep. 3 1344
[29] Solá L, Romance M, Criado R, Flores J, García D A A and Boccaletti S 2013 Chaos 23 175
[30] Fagin R, Kumar R and Sivakumar 2003 SIAM. J. Discrete. Math. 17 134
[1] Diffusional inhomogeneity in cell cultures
Jia-Zheng Zhang(张佳政), Na Li(李娜), Wei Chen(陈唯). Chin. Phys. B, 2018, 27(2): 028705.
[2] Rotational stretched exponential relaxation in random trap-barrier model
Ekrem Aydıner. Chin. Phys. B, 2015, 24(7): 070501.
[3] Exact scaling for the mean first-passage time of random walks on a generalized Koch network with a trap
Zhang Jing-Yuan(张静远), Sun Wei-Gang(孙伟刚), and Chen Guan-Rong(陈关荣) . Chin. Phys. B, 2012, 21(3): 038901.
No Suggested Reading articles found!