Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 059501    DOI: 10.1088/1674-1056/24/5/059501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period

Wang Gang (王刚)a, Ni Wei-Tou (倪维斗)b
a Shenzhen National Climate Observatory, Shenzhen 518040, China;
b Center for Gravitation and Cosmology (CGC), Department of Physics, Tsing Hua University, Hsinchu, Taiwan 30013, China
Abstract  

ASTROD-GW (ASTROD [astrodynamical space test of relativity using optical devices] optimized for gravitational wave detection) is a gravitational-wave mission with the aim of detecting gravitational waves from massive black holes, extreme mass ratio inspirals (EMRIs) and galactic compact binaries together with testing relativistic gravity and probing dark energy and cosmology. Mission orbits of the 3 spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun–Earth Lagrange points L3, L4, and L5. The 3 spacecrafts range interferometrically with one another with arm length about 260 million kilometers. For 260 times longer arm length, the detection sensitivity of ASTROD-GW is 260 fold better than that of eLISA/NGO in the lower frequency region by assuming the same acceleration noise. Therefore, ASTROD-GW will be a better cosmological probe. In previous papers, we have worked out the time delay interferometry (TDI) for the ecliptic formation. To resolve the reflection ambiguity about the ecliptic plane in source position determination, we have changed the basic formation into slightly inclined formation with half-year precession-period. In this paper, we optimize a set of 10-year inclined ASTROD-GW mission orbits numerically using ephemeris framework starting at June 21, 2035, including cases of inclination angle with 0° (no inclination), 0.5°, 1.0°, 1.5°, 2.0°, 2.5°, and 3.0°. We simulate the time delays of the first and second generation TDI configurations for the different inclinations, and compare/analyse the numerical results to attain the requisite sensitivity of ASTROD-GW by suppressing laser frequency noise below the secondary noises. To explicate our calculation process for different inclination cases, we take the 1.0° as an example to show the orbit optimization and TDI simulation.

Keywords:  orbit optimization      ASTROD-GW      gravitational wave detector      time delay interferometry  
Received:  15 September 2014      Revised:  18 December 2014      Accepted manuscript online: 
PACS:  95.10.Eg (Orbit determination and improvement)  
  95.55.Ym (Gravitational radiation detectors; mass spectrometers; and other instrumentation and techniques)  
  04.80.Nn (Gravitational wave detectors and experiments)  
  07.60.Ly (Interferometers)  
Corresponding Authors:  Wang Gang, Ni Wei-Tou     E-mail:  gwanggw@gmail.com;weitou@gmail.com
About author:  95.10.Eg; 95.55.Ym; 04.80.Nn; 07.60.Ly

Cite this article: 

Wang Gang (王刚), Ni Wei-Tou (倪维斗) Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period 2015 Chin. Phys. B 24 059501

[1] Ni W T 2010 Mod. Phys. Lett. A 25 922
[2] Classification of Gravitational Waves http://astrod.wikispaces.com/file/view/GW-classification.pdf
[3] Hanson D, Hoover S, Crites A, et al. (SPTpol Collaboration) 2013 Phys. Rev. Lett. 111 141301
[4] Ade P A R, Akiba Y, Anthony A E, et al. (POLARBEAR Collaboration) 2014 Astrophys. J. 794 171
[5] Ade P A R, Aikin R W, Barkats D, et al. (BICEP2 Collaboration) 2014 Phys. Rev. Lett. 112 241101
[6] Ade P A R, Aghanim N, Armitage-Caplan C, et al. (Planck Collaboration) 2014 Astron. Astrophys. 571 A16
[7] Naess S, Hasselfield M, McMahon J, et al. 2014 JCAP 10 007
[8] The Advanced LIGO Teamhttp://www.ligo.caltech.edu/advLIGO/
[9] The Advanced Virgo Teamhttp://wwwcascina.virgo.infn.it/advirgo/docs/whitepaper.pdf
[10] KAGRA Large-Scale Cryogenic Gravitational Wave Telescope Project http://gwcenter.icrr.u-tokyo.ac.jp/en/
[11] LIGO-India Moving Forward http://www.phy.olemiss.edu/GR/?x=entry:entry120329-132004
[12] Unnikrishnan C S 2013 Int. J. Mod. Phys. D 22 1341010
[13] International Pulsar Timing Array http://www.ipta4gw.org/
[14] European Pulsar Timing Array (EPTA) http://www.epta.eu.org/
[15] North American Nanohertz Observatory for Gravitational Waves (NANOGrav) http://www.nanograv.org/
[16] Parkes Pulsar Timing Array (PPTA) http://www.atnf.csiro.au/research/pulsar/ppta/
[17] Ni W T 2013 Adv. Space Res. 51 525
[18] eLISA/NGO Assessment Study Team 2011 ESA/SRE 19 http://elisa-ngo.org/
[19] Ni W T 2009 ASTROD Optimized for Gravitational-Wave Detection: ASTROD-GW-a pre-Phase A study proposal submitted to Chinese Academy of Sciences, February 26, 2009
[20] Ni W T, Men J R, Mei X H, et al. 2009 Proceedings of Sixth Deep Space Exploration Technology Symposium, December 3-6, 2009, Sanya, China, p. 122
[21] Ni W T 2013 Int. J. Mod. Phys. D 22 1341004
[22] Ni W T 2009 Class. Quantum Grav. 26 075021
[23] Crowder J and Cornish N J 2005 Phys. Rev. D 72 083005
[24] Kawamura S, Nakamura T, Ando M, et al. 2006 Class. Quantum Grav. 23 S125
[25] Kawamura S, Ando M, Seto N, et al. 2011 Class. Quantum Grav. 28 094011
[26] Ando M and the DECIGO Working Group 2013 Int. J. Mod. Phys. D 22 1341002
[27] Ni W T, Shy J T, Tseng S M, Xu X, Yeh H C, Hsu W Y, Liu W L, Tzeng S D, Fridelance P, Samain E and Wu A M 1997 Proceedings of SPIE 3116: Small Spacecraft, Space Environments, and Instrumentation Technologies p. 105
[28] Ni W T, Sandford M C W, Veillet C, Wu A M, Fridelance P, Samain E, Spalding G and Xu X 2003 Adv. Space Res. 32 1437
[29] Armstrong J W, Estabrook F B and Tinto M 1999 Astrophys. J. 527 814
[30] Tinto M and Dhurandhar S V 2005 Living Rev. Relativity 8 4
[31] Wang G and Ni W T 2011 Acta Astron. Sin. 52 427 (in Chinese)
[32] Wang G and Ni W T 2012 Chin. Astron. Astrophys. 36 211
[33] Wang G 2011 Time-delay Interferometry for ASTROD-GW (MS Thesis) (Nanjing: Purple Mountain Observatory) (in Chinese)
[34] Wang G and Ni W T 2013 Chin. Phys. B 22 049501
[35] Dhurandhar S V, Ni W T and Wang G 2013 Adv. Space Res. 51 198
[36] Wang G and Ni W T 2013 Class. Quantum Grav. 30 065011
[37] http://www.esa.int/Our_Activities/Space_Science/ESA_s_new_vision_to_study_the_invisible_Universe
[38] Men J R, Ni W T and Wang G 2009 Acta Astron. Sin. 51 198 (in Chinese)
[39] Men J R, Ni W T and Wang G 2010 Chin. Astron. Astrophys. 34 434
[40] Yi Z 2002 Publications of the Yunnan Observatory 3 9 (in Chinese)
[41] Damour, T, Soffel M and Xu C 1991 Phys. Rev. D 43 3273
[42] Soffel M, Klioner S A, Petit G, Wolf P, Kopeikin S M, Bretagnon P, Brumberg V A, Capitaine N, Damour T, Fukushima T, Guinot B, Huang T, Lindegren L, Ma C, Nordtvedt K, Ries J, Seidelmann P K, Vokrouhlicky D, Will C and Xu C 2003 Astron. J. 126 2687
[43] Brumberg V A 1991 Essential Relativistic Celestial Mechanics (Bristol: Adam Hilger) p. 175
[44] The Asteroid Orbital Elements Database ftp://ftp.lowell.edu/pub/elgb/astorb.html
[45] Folkner W M, Williams J G, Boggs D H, et al. 2014 IPN Progress Report 42 196
[46] Ni W T 1997 Gravitational Wave Detection (Tokyo: Universal Academy Press) p. 117
[47] Liao A C, Ni W T and Shy J T 2002 Publications of the Yunnan Observatory 3 88 (in Chinese)
[48] Liao A C, Ni W T and Shy J T 2002 Int. J. Mod. Phys. D 11 1075
[48] Dick G J, Strekalov M D, Birnbaum K, et al. 2008 IPN Progress Report 42 175
[50] Vallisneri M 2005 Phys. Rev. D 72 042003
[51] Dhurandhar S V, Nayak K R and Vinet J Y 2010 Class. Quantum Grav. 27 135013
[52] de Vine G, Ware B, McKenzie K, Spero R E, Klipstein W M and Shaddock D A 2010 Phys. Rev. Lett. 104 211103
[1] Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris
Wang Gang (王刚), Ni Wei-Tou (倪维斗). Chin. Phys. B, 2013, 22(4): 049501.
No Suggested Reading articles found!