Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054204    DOI: 10.1088/1674-1056/24/5/054204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A novel phase-sensitive scanning near-field optical microscope

Wu Xiao-Yu (武晓宇), Sun Lin (孙琳), Tan Qiao-Feng (谭峭峰), Wang Jia (王佳)
Department of Precision Instruments, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
Abstract  

Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field optical microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.

Keywords:  phase detection      scanning near-field optical microscope (SNOM)      heterodyne interferometry      surface plasmon polariton (SPP) devices  
Received:  15 August 2014      Revised:  24 November 2014      Accepted manuscript online: 
PACS:  42.30.Rx (Phase retrieval)  
  52.25.-b (Plasma properties)  
  07.79.Fc (Near-field scanning optical microscopes)  
  06.30.Ka (Basic electromagnetic quantities)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61177089, 61227014, and 60978047).

Corresponding Authors:  Tan Qiao-Feng     E-mail:  tanqf@mail.tsinghua.edu.cn
About author:  42.30.Rx; 52.25.-b; 07.79.Fc; 06.30.Ka

Cite this article: 

Wu Xiao-Yu (武晓宇), Sun Lin (孙琳), Tan Qiao-Feng (谭峭峰), Wang Jia (王佳) A novel phase-sensitive scanning near-field optical microscope 2015 Chin. Phys. B 24 054204

[1] Courjon D and Bainier C 1994 Reports on Progress in Physics 57 989
[2] Novotny L 2007 Progress in Optics 50 137
[3] Alonso-Gonzalez P, Albella P and Schnell M 2012 Nat. Commun. 3 684
[4] Huth F, Chuvilin A and Schnell M 2013 Nano Lett. 13 1065
[5] Alonso-González P, Nikitin A Y and Golmar F 2014 Science 344 1369
[6] Bharadwaj P, Deutsch B and Novotny L 2009 Adv. Opt. Photon. 1 438
[7] Sfez T, Descrovi E and Yu L 2010 J. Opt. Soc. Am. B 27 1617
[8] Descrovi E, Sfez T and Quaglio M 2010 Nano Lett. 10 2087
[9] Yu L 2013 Near-field Imaging: Investigations on Bloch Surface Wave Based 2D Optics and the Development of Polarization-retrieved Characterization (PhD Dissertation)
[10] Wu X, Barakat E and Yu L 2014 Journal of the European Optical Society: Rapid Publications 9 14049
[11] Nesci A, Dändliker R and Salt M 2002 Opt. Commun. 205 229
[12] Stefanon S B, Bruyant A, Aubert S, Lerondel G, Bachelot R and Royer P 2005 Opt. Express 13 14
[13] Sandtke M, Engelen R J P and Schoenmaker H 2008 Review of Scientific Instruments 79 013704
[14] Hecht E 2002 Optics (New York: Addison-Wesley Longman, Incorporated)
[15] Dändliker R 1980 Progress in Optics 17 1
[16] Li X, Tan Q and Bai B 2011 Appl. Phys. Lett. 98 251109
[17] Li X, Huang L and Tan Q 2011 Opt. Express 19 6541
[18] William L B 2006 J. Opt. A: Pure Appl. Opt. 8 S87
[1] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[2] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[3] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[4] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[5] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[6] Modified scaling angular spectrum method for numerical simulation in long-distance propagation
Xiao-Yi Chen(陈晓义), Ya-Xuan Duan(段亚轩), Bin-Bin Xiang(项斌斌), Ming Li(李铭), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(3): 034203.
[7] Biases of estimated signals in x-ray analyzer-based imaging
Jianlin Xia(夏健霖), Wen Xu(徐文), Ruicheng Zhou(周瑞成), Xiaomin Shi(石晓敏), Kun Ren(任坤), Heng Chen(陈恒), Zhili Wang(王志立). Chin. Phys. B, 2020, 29(6): 068703.
[8] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[9] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[10] Theory and method of dual-energy x-ray grating phase-contrast imaging
Feng Rong(荣锋), Yan Gao(高艳), Cui-Juan Guo(郭翠娟), Wei Xu(徐微), Wei Xu(徐伟). Chin. Phys. B, 2019, 28(10): 108702.
[11] Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(8): 084202.
[12] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[13] Memory effect evaluation based on transmission matrix calculation
Ming Li(李明), Long-Jie Fang(方龙杰), Lin Pang(庞霖). Chin. Phys. B, 2019, 28(7): 074207.
[14] Rapid measurement of transmission matrix with the sequential semi-definite programming method
Zhenfeng Zhang(张振峰), Bin Zhang(张彬), Qi Feng(冯祺), Huimei He(何惠梅), Yingchun Ding(丁迎春). Chin. Phys. B, 2018, 27(8): 084201.
[15] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
No Suggested Reading articles found!