Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094704    DOI: 10.1088/1674-1056/27/9/094704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase field simulation of single bubble behavior under an electric field

Chang-Sheng Zhu(朱昶胜)1,2, Dan Han(韩丹)1, Sheng Xu(徐升)1
1 School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China;
2 State Key Laboratory of Gansu Advanced Processing and Recycling of Non-Ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  

Based on the Cahn-Hilliard phase field model, a three-dimensional multiple-field coupling model for simulating the motion characteristics of a rising bubble in a liquid is established in a gas-liquid two-phase flow. The gas-liquid interface motion is simulated by using a phase-field method, and the effect of the electric field intensity on bubble dynamics is studied without electric field, or with vertical electric field or horizontal electric field. Through the coupling effect of electric field and flow field, the deformation of a single rising bubble and the formation of wake vortices under the action of gravity and electric field force are studied in detail. The correctness of the results is verified by mass conservation, and the influences of different electric field directions and different voltages on the movement of bubbles in liquid are considered. The results show that the ratio of the length to axis is proportional to the strength of the electric field when the air bubble is stretched into an ellipsoid along the electric field line under the action of electrostatic gravity and surface tension. In addition, the bubble rising speed is affected by the electric field, the vertical electric field accelerates the bubble rise, and the horizontal direction slows it down.

Keywords:  electro-hydro dynamics      numerical simulation      phase field method      bubble  
Received:  21 January 2018      Revised:  14 May 2018      Accepted manuscript online: 
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  47.55.dd (Bubble dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51661020, 11504149, and 11364024), the Postdoctoral Science Foundation of China (Grant No. 2014M560371), and the Funds for Distinguished Young Scientists of Lanzhou University of Technology, China (Grant No. J201304).

Corresponding Authors:  Chang-Sheng Zhu     E-mail:  zhucs_2008@163.com

Cite this article: 

Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Sheng Xu(徐升) Phase field simulation of single bubble behavior under an electric field 2018 Chin. Phys. B 27 094704

[1] Zhao T, Liu Y P, Lü F C and Liu S 2016 J. Syst. Sl. 12 3081
[2] Zhang J S, Lv Q, Sun C D, Lu D and Chen L Y 2000 Acta Phot. Sin. 29 952 (in Chinese)
[3] Zu Y Q and Yan Y Y 2009 Int. J. Heat. Fluid Fl. 30 761
[4] Amaya-Bower L and Lee T 2010 Comput. Fluids. 39 1191
[5] Hua J, Stene J F and Lin P 2008 J. Comput. Phys. 227 3358
[6] Liu Q, Shui H S and Zhang X Y 2002 Adv. Mech. 32 259
[7] Zhang S J, Wu C J and Wang H M 2005 Hehai. Univ:Nat. Sci. Ed. 33 534
[8] Safi M A and Turek S 2015 Comput. Math. Appl. 70 1290
[9] Wang L L, Li G J and Tian H 2011 Xi'an. Jiao. Tong. Univ. 45 65
[10] Shen J and Yang X 2010 Chin. Ann. Math. B 31 743
[11] Marco P D, Grassi W, Memoli G, Takamasa T, Tomiyama A and Hosokawa S 2003 Int. J. Multiphas. Flow. 29 559
[12] Peng Y, Feng F and Song Y Z 2008 Chin. J. Chem. Eng. 16 178
[13] Andalib S, Hokmabad B V and Esmaeilzadeh E 2013 Colloids. Surfaces. Ace. A 436 604
[14] Chen F, Song Y Z and Chen M 2006 J. Therm. Sci. Techno. 5 139
[15] Gurtin M E, Polignone D and Vinals J 1996 Math. Models. Methods. Appl. Sci. 6 815
[16] Lowengrub J and Truskinovsky L 1998 Proc. R. Soc. Lond. A 454 2617
[17] Sun T, Sun J G Ang X Y, Li S S and Su X 2016 Int. J. Heat. Fluid Fl. 62 362
[18] Zhou C, Yue P, Feng J J, Olliviergooch C F and Hu H H 2006 J. Comput. Phys. 219 47
[19] Ding H, Spelt P D M and Shu C 2007 J. Comput. Phys. 226 2078
[20] Yue P, Feng J J, Liu C and Shen J 2004 J. Fluid Mech. 515 293
[21] Jacqmin D 1999 J. Comput. Phys. 155 96
[22] Huang X Q 1995 J. Nanjing. Normal:Nat. Sci. Ed. 14 41
[23] Allen P H G and Karayiannis T G 1995 Heat Recov. Syst. CHP 15 389
[24] Zaghdoudi M C, Lallem and M 2000 Int. J. Therm. Sci. 39 39
[25] Wu J, Xu S and Zhao N 2013 Chin. J. Comput. Phys. 30 1
[26] Teigen K E and Munkejord S T 2009 IEEE. T. Dlelect. El. 16 475
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[5] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[6] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[7] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[8] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[9] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[12] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[13] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[14] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[15] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
No Suggested Reading articles found!