Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094703    DOI: 10.1088/1674-1056/27/9/094703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Cavity formation during water entry of heated spheres

Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学)
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Abstract  

We experimentally study the cavity formation when heated spheres impact onto water at low and high subcooling. The observations present that the formation and appearance of the cavity are affected by the boiling modes and the heat transfer intensity. In the nucleate-boiling regime, a rough cavity can be formed at a rather low impact velocity, while at the same velocity, the cavity formed in the film-boiling regime may have a very smooth interface with a stable vapor layer around the sphere. We discuss the effects of the impact speed, water and sphere temperatures on the stability of the vapor layer. For low subcooled water, the stable vapor layer will be disturbed when increasing the impact velocity, leading to a disturbed cavity. For high subcooled water, the film boiling has a particular boiling model in which the vapor layer around the sphere cannot keep its stability. In this particular film-boiling regime, no cavities can be formed at low impact velocities and only broken cavities can be formed at high impact velocities.

Keywords:  water-entry cavity      boiling      vapor layer  
Received:  27 February 2018      Revised:  15 May 2018      Accepted manuscript online: 
PACS:  47.55.dp (Cavitation and boiling)  
  47.54.De (Experimental aspects)  
  68.35.Rh (Phase transitions and critical phenomena)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11672094).

Corresponding Authors:  Ying-Jie Wei     E-mail:  weiyingjie@gmail.com

Cite this article: 

Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学) Cavity formation during water entry of heated spheres 2018 Chin. Phys. B 27 094703

[1] Seddon C M and Moatamedi M 2006 Int. J. Impact Eng. 32 1045
[2] Von Kármán T 1929 Tech. Report Archive & Image Library NACA TN 321, Washington, USA
[3] May A 1952 J. Appl. Phys. 23 1362
[4] Worthington A M 1908 Longmans Green
[5] Worthington A M and Cole R S 1897 Phil. Trans. R. Soc. Lond. A 189 137
[6] Worthington A M and Cole R S 1900 Phil. Trans. R. Soc. Lond. A 194 175
[7] May A 1951 J. Appl. Phys. 22 1219
[8] Aristoff J M, Truscott T T, Techet A H and Bush J W M 2010 Phys. Fluids 22 032102
[9] Duez C, Ybert C, Clanet C and Bocquet L 2007 Nat. Phys. 3 180
[10] Duclaux V, Caillé F, Duez C, Ybert C, Bocquet L and Clanet C 2007 J. Fluid Mech. 591 1
[11] Aristoff J M and Bush J W M 2009 J. Fluid Mech. 619 45
[12] Ding H, Chen B Q, Liu H R, Zhang C Y, Gao P and Lu X Y 2015 J. Fluid Mech. 783 504
[13] Marston J O, Truscott T T, Speirs N B, Mansoor M M and Thoroddsen S T 2016 J. Fluid Mech. 794 506
[14] Leidenfrost J G 1966 Int. Heat Mass Transf. 9 1153
[15] Kenning D B R 2004 Int. J. Heat Fluid Flow 25 209
[16] Vakarelski I U, Patankar N A, Marston J O, Chan D Y C and Thoroddsen S T 2012 Nature 489 274
[17] Yagov V V, Leksin M A, Zabirov A R and Denisov M A 2016 Int. Heat Mass Transf. 100 918
[18] Yagov V V, Lexin M A, Zabirov A R and Kaban'kov O N 2016 Int. Heat Mass Transf. 100 98
[19] Gylys J, Skvorcinskiene R, Paukstaitis L, Gylys M and Adomavicius A A 2016 Int. Heat Mass Transf. 95 709
[20] Zvirin Y, Hewitt G R and Kenning D B R 1990 Exp. Heat Transf. 3 185
[21] Gylys J, Skvorcinskiene R, Paukstaitis L, Gylys M and Adomavicius A A 2015 Int. Heat Mass Transf. 89 913
[22] Vakarelski I U, Marston J O, Chan D Y C and Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501
[23] Marston J O, Vakarelski I U and Thoroddsen S T 2012 J. Fluid Mech. 699 465
[24] Mansoor M M, Vakarelski I U, Marston J O, Mansoor M M and Thoroddsen S T 2017 J. Fluid Mech. 823 716
[25] Li J C, Wei Y J, Wang C and Deng H Y 2016 Acta Phys. Sin. 65 204703 (in Chinese)
[26] Bell G E 1924 Phil. Mag. 648 75
[27] Biance A L, Chevy F, Clanet C, Lagubeau G and Quéré D 2006 J. Fluid Mech. 554 47
[28] Quéré D 2013 Annu. Rev. Fluid Mech. 45 197
[29] Vakarelski I U, Chan D Y C and Thoroddsen S T 2014 Soft Matter 10 5662
[30] Bernardin J D and Mudawar I 2004 J. Heat Transf. 126 272
[31] Tran T, Staat H J J, Prosperetti A, Sun, C and Lohse D 2012 Phys. Rev. Lett. 108 036101
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[3] Drag reduction characteristics of heated spheres falling into water
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(12): 124703.
[4] Subcooled pool boiling heat transfer in fractal nanofluids:A novel analytical model
Xiao Bo-Qi (肖波齐), Yang Yi (杨毅), Xu Xiao-Fu (许晓赋). Chin. Phys. B, 2014, 23(2): 026601.
[5] A theoretical estimation of the pre-breakdown-heating time in the underwater discharge acoustic source
Wang Yi-Bo(王一博), Wang Shang-Wu(王尚武), and Zeng Xin-Wu(曾新吾) . Chin. Phys. B, 2012, 21(5): 055203.
No Suggested Reading articles found!