Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094203    DOI: 10.1088/1674-1056/27/9/094203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonuniform sampled angular spectrum method by using trigonometric interpolation

Qiu-Hu Cheng(程秋虎), Shi-Yu Wang(王石语), Meng-Yao Wu(吴梦瑶), Zhen Guo(过振), De-Fang Cai(蔡德芳), Bing-Bin Li(李兵斌)
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  

The angular spectrum method (ASM) is a popular numerical approach for scalar diffraction calculations. However, traditional ASM has an inherent problem in that nonuniform sampling is precluded. In an attempt to address this limitation, an improved trigonometric interpolation ASM (TIASM) is proposed, in which the fast Fourier transform (FFT) is replaced by a trigonometric interpolation. The results show that TIASM is more suitable to situations in which the source field has a simple and strong frequency contrast, irrespective of whether the original phase distribution is a plane wave or a Fresnel zone plate phase distribution.

Keywords:  wave optics      diffraction      Fourier optics      diffraction efficiency  
Received:  24 January 2018      Revised:  29 June 2018      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.25.Fx (Diffraction and scattering)  
  42.30.Kq (Fourier optics)  
  42.40.Lx (Diffraction efficiency, resolution, and other hologram characteristics)  
Fund: 

Project supported by Chinese National Research Fund (Grant No. 9140A02010514DZ01019).

Corresponding Authors:  Qiu-Hu Cheng     E-mail:  chengqiouhu@126.com

Cite this article: 

Qiu-Hu Cheng(程秋虎), Shi-Yu Wang(王石语), Meng-Yao Wu(吴梦瑶), Zhen Guo(过振), De-Fang Cai(蔡德芳), Bing-Bin Li(李兵斌) Nonuniform sampled angular spectrum method by using trigonometric interpolation 2018 Chin. Phys. B 27 094203

[1] Goodman J W 2005 Introduction to Fourier Optics, 3rd edn. (Colorado:Roberts) p. 16
[2] Goodman J W and Lawrence R W 1967 Appl. Phys. Lett. 11 77
[3] Fan S, Zhang Y P, Wang F, Gao Y L, Qian X F, Zhang Y A, Xu W and Cao L C 2018 Acta Phys. Sin. 67 094203 (in Chinese)
[4] Yuan F, Yuan C J, Nie S P, Zhu Z Q, Ma Q Y, Li Y, Zhu W Y and Feng S T 2014 Acta Phys. Sin. 63 104207 (in Chinese)
[5] Tian J D, Niu H B, Yu B and Peng X 2005 Acta Phys. Sin. 54 2034 (in Chinese)
[6] Schnars U and Jüptner W 1994 Appl. Opt. 33 179
[7] Kreis T M, Adams M and Jueptner W P O 1997 Proc. SPIE 3098 224
[8] Hooker B and Delen N 1998 J. Opt. Soc. Am. A 15 857
[9] Matsushima K 2010 Opt. Express 18 18453
[10] Jeong S J and Hong C K 2008 Appl. Opt. 47 3064
[11] De Nicola S, Finizio A, Pierattini G, Ferraro P and Alfieri D 2005 Opt. Express 13 9935
[12] Shimobaba T, Kakue T, Oikawa M, Okada N, Endo Y, Hirayama R and Ito T 2013 Opt. Lett. 38 5130
[13] Engelberg Y M and Ruschin S 2004 J. Opt. Soc. Am. A 21 2135
[14] Shen F and Wang A 2006 Appl. Opt. 45 1102
[15] Matsushima K, Schimmel H and Wyrowski F 2003 J. Opt. Soc. Am. A 20 1755
[16] Zhao Y, Cao L, Zhang H, Kong D and Jin G 2015 Opt. Express 23 25440
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[3] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[4] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[5] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[6] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[7] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[8] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[9] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[10] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[11] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[12] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[13] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[14] Modified scaling angular spectrum method for numerical simulation in long-distance propagation
Xiao-Yi Chen(陈晓义), Ya-Xuan Duan(段亚轩), Bin-Bin Xiang(项斌斌), Ming Li(李铭), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(3): 034203.
[15] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
No Suggested Reading articles found!