Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 087307    DOI: 10.1088/1674-1056/27/8/087307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multi-carrier transport in ZrTe5 film

Fangdong Tang(汤方栋)1,2, Peipei Wang(王培培)2, Peng Wang(王鹏)2, Yuan Gan(甘远)2, Le Wang(王乐)1, Wei Zhang(张威)1, Liyuan Zhang(张立源)2
1 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natual Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  

Single-layered zirconium pentatelluride (ZrTe5) has been predicted to be a large-gap two-dimensional (2D) topological insulator, which has attracted particular attention in topological phase transitions and potential device applications. Herein, we investigated the transport properties in ZrTe5 films as a function of thickness, ranging from a few nm to several hundred nm. We determined that the temperature of the resistivity anomaly peak (Tp) tends to increase as the thickness decreases. Moreover, at a critical thickness of~40 nm, the dominating carriers in the films change from n-type to p-type. A comprehensive investigation of Shubnikov-de Hass (SdH) oscillations and Hall resistance at variable temperatures revealed a multi-carrier transport tendency in the thin films. We determined the carrier densities and mobilities of two majority carriers using the simplified two-carrier model. The electron carriers can be attributed to the Dirac band with a non-trivial Berry phase π, while the hole carriers may originate from surface chemical reaction or unintentional doping during the microfabrication process. It is necessary to encapsulate the ZrTe5 film in an inert or vacuum environment to potentially achieve a substantial improvement in device quality.

Keywords:  multi-carrier transport      ZrTe5 film      thickness-dependence      gate-dependence  
Received:  10 April 2018      Revised:  01 June 2018      Accepted manuscript online: 
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: 

Project supported by Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348) and Shenzhen Peacock Program (Grant No. KQTD2016022619565991).

Corresponding Authors:  Le Wang     E-mail:  le.wang@ruc.edu.cn

Cite this article: 

Fangdong Tang(汤方栋), Peipei Wang(王培培), Peng Wang(王鹏), Yuan Gan(甘远), Le Wang(王乐), Wei Zhang(张威), Liyuan Zhang(张立源) Multi-carrier transport in ZrTe5 film 2018 Chin. Phys. B 27 087307

[1] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[2] Konig M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[3] Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H and Kahn S 2017 Nat. Phys. 13 683
[4] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P and Wang L L 2013 Science 340 167
[5] Feng X, Feng Y, Wang J, Ou Y, Hao Z, Liu C, Zhang Z, Zhang L, Lin C and Liao J 2016 Adv. Mater. 28 6386
[6] Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[7] Manzoni G, Gragnaniello L, Autes G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V, Vobornik I, Barba L, Bisti F, Bugnon P, Magrez A, Strocov V N, Berger H, Yazyev O V, Fonin M, Parmigiani F and Crepaldi A 2016 Phys. Rev. Lett. 117 237601
[8] Li X B, Huang W K, Lv Y, Zhang K W, Yang C L, Zhang B B, Chen Y B, Yao S H, Zhou J, Lu M H, Sheng L, Li S C, Jia J F, Xue Q K, Chen Y F and Xing D Y 2016 Phys. Rev. Lett. 116 176803
[9] Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
[10] Moreschini L, Johannsen J C, Berger H, Denlinger J, Jozwiack C, Rotenberg E, Kim K S, Bostwick A and Grioni M 2016 Phys. Rev. B 94 081101
[11] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550
[12] Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414
[13] Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404
[14] Geim A K and Grigorieva I V 2013 Nature 499 419
[15] Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, Wang W, Xiong H, Sobota J A, Hashimoto M and Kirchmann P S 2018 Nat. Phys. 14 451
[16] Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z, Yang L, Zou J, Wu X, Sanvito S, Xia Z, Li L, Wang Z and Xiu F 2016 Nat. Commun. 7 12516
[17] Lu J, Zheng G, Zhu X, Ning W, Zhang H, Yang J, Du H, Yang K, Lu H and Zhang Y 2017 Phys. Rev. B 95 125135
[18] Niu J J, Wang J Y, He Z J, Zhang C L, Li X Q, Cai T C, Ma X M, Jia S, Yu D P and Wu X S 2017 Phys. Rev. B 95 035420
[19] Qiu G, Du Y, Charnas A, Zhou H, Jin S, Luo Z, Zemlyanov D Y, Xu X, Cheng G J and Ye P D 2016 Nano Lett. 16 7364
[20] Li C Z, Li J G, Wang L X, Zhang L, Zhang J M, Yu D and Liao Z M 2016 ACS Nano 10 6020
[21] Wang Y, Wang K, Reuttrobey J, Paglione J and Fuhrer M S 2016 Phys. Rev. B 93 121108
[22] Zhao L X, Huang X C, Long Y J, Chen D, Liang H, Yang Z H, Xue M Q, Ren Z A, Weng H M, Fang Z, Dai X and Chen G F 2017 Chin. Phys. Lett. 34 037102
[23] Wu D, Liao J, Yi W, Wang X, Li P, Weng H, Shi Y, Li Y, Luo J and Dai X 2016 Appl. Phys. Lett. 108 042105
[24] Du X, Tsai S W, Maslov D L and Hebard A F 2005 Phys. Rev. Lett. 94 166601
[25] Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Yan J Q, Mandrus D G and Cheng J G 2016 Phys. Rev. X 8 021055
[26] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[27] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C and Zhou X J 2017 Nat. Commun. 8 15512
[28] Wu Y, Jo N H, Ochi M, Huang L, Mou D, Bud'Ko S L, Canfield P C, Trivedi N, Arita R and Kaminski A 2015 Phys. Rev. Lett. 115 166602
[29] Huang S M, Huang C Y, Huang S J, Hsu C, Yu S H, Chou M, Wadekar P V, Chen Y S and Tu L W 2017 J. Appl. Phys. 121 054311
[30] Thomas C R, Vallon M K, Frith M G, Sezen H, Kushwaha S K, Cava R J, Schwartz J and Bernasek S L 2016 Chem. Mater. 28 35
[31] Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
[32] Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
[33] Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y and Tokura Y 2013 Nat. Mater. 12 512
[34] Husmann A, Betts J B, Boebinger G S, Migliori A, Rosenbaum T F and Saboungi M L 2002 Nature 417 421
[35] Resta R 1977 Phys. Rev. B 16 2717
[36] Newns D M 1969 J. Chem. Phys. 50 4572
[37] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[38] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K and Taniguchi T 2016 Nat. Nanotechnol. 11 593
[39] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[1] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[2] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[3] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[4] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[5] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[6] Origin of anomalous enhancement of the absorption coefficient in a PN junction
Xiansheng Tang(唐先胜), Baoan Sun(孙保安), Chen Yue(岳琛), Xinxin Li(李欣欣), Junyang Zhang(张珺玚), Zhen Deng(邓震), Chunhua Du(杜春花), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Yang Jiang(江洋), Weihua Wang(汪卫华), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 097804.
[7] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[8] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[9] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[10] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[11] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[12] In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047104.
[13] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[14] Tunable superconductivity in parent cuprate Pr2CuOδ thin films
Xinjian Wei(魏鑫健), Ge He(何格), Wei Hu(胡卫), Xu Zhang(张旭), Mingyang Qin(秦明阳), Jie Yuan(袁洁), Beiyi Zhu(朱北沂), Yuan Lin(林媛), Kui Jin(金魁). Chin. Phys. B, 2019, 28(5): 057401.
[15] High performance lateral Schottky diodes based on quasi-degenerated Ga2O3
Yang Xu(徐阳), Xuanhu Chen(陈选虎), Liang Cheng(程亮), Fang-Fang Ren(任芳芳), Jianjun Zhou(周建军), Song Bai(柏松), Hai Lu(陆海), Shulin Gu(顾书林), Rong Zhang(张荣), Youdou Zheng(郑有炓), Jiandong Ye(叶建东). Chin. Phys. B, 2019, 28(3): 038503.
No Suggested Reading articles found!