CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Multi-carrier transport in ZrTe5 film |
Fangdong Tang(汤方栋)1,2, Peipei Wang(王培培)2, Peng Wang(王鹏)2, Yuan Gan(甘远)2, Le Wang(王乐)1, Wei Zhang(张威)1, Liyuan Zhang(张立源)2 |
1 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Natual Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Single-layered zirconium pentatelluride (ZrTe5) has been predicted to be a large-gap two-dimensional (2D) topological insulator, which has attracted particular attention in topological phase transitions and potential device applications. Herein, we investigated the transport properties in ZrTe5 films as a function of thickness, ranging from a few nm to several hundred nm. We determined that the temperature of the resistivity anomaly peak (Tp) tends to increase as the thickness decreases. Moreover, at a critical thickness of~40 nm, the dominating carriers in the films change from n-type to p-type. A comprehensive investigation of Shubnikov-de Hass (SdH) oscillations and Hall resistance at variable temperatures revealed a multi-carrier transport tendency in the thin films. We determined the carrier densities and mobilities of two majority carriers using the simplified two-carrier model. The electron carriers can be attributed to the Dirac band with a non-trivial Berry phase π, while the hole carriers may originate from surface chemical reaction or unintentional doping during the microfabrication process. It is necessary to encapsulate the ZrTe5 film in an inert or vacuum environment to potentially achieve a substantial improvement in device quality.
|
Received: 10 April 2018
Revised: 01 June 2018
Accepted manuscript online:
|
PACS:
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348) and Shenzhen Peacock Program (Grant No. KQTD2016022619565991). |
Corresponding Authors:
Le Wang
E-mail: le.wang@ruc.edu.cn
|
Cite this article:
Fangdong Tang(汤方栋), Peipei Wang(王培培), Peng Wang(王鹏), Yuan Gan(甘远), Le Wang(王乐), Wei Zhang(张威), Liyuan Zhang(张立源) Multi-carrier transport in ZrTe5 film 2018 Chin. Phys. B 27 087307
|
[1] |
Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
|
[2] |
Konig M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[3] |
Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H and Kahn S 2017 Nat. Phys. 13 683
|
[4] |
Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P and Wang L L 2013 Science 340 167
|
[5] |
Feng X, Feng Y, Wang J, Ou Y, Hao Z, Liu C, Zhang Z, Zhang L, Lin C and Liao J 2016 Adv. Mater. 28 6386
|
[6] |
Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
|
[7] |
Manzoni G, Gragnaniello L, Autes G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V, Vobornik I, Barba L, Bisti F, Bugnon P, Magrez A, Strocov V N, Berger H, Yazyev O V, Fonin M, Parmigiani F and Crepaldi A 2016 Phys. Rev. Lett. 117 237601
|
[8] |
Li X B, Huang W K, Lv Y, Zhang K W, Yang C L, Zhang B B, Chen Y B, Yao S H, Zhou J, Lu M H, Sheng L, Li S C, Jia J F, Xue Q K, Chen Y F and Xing D Y 2016 Phys. Rev. Lett. 116 176803
|
[9] |
Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
|
[10] |
Moreschini L, Johannsen J C, Berger H, Denlinger J, Jozwiack C, Rotenberg E, Kim K S, Bostwick A and Grioni M 2016 Phys. Rev. B 94 081101
|
[11] |
Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosić I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550
|
[12] |
Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414
|
[13] |
Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404
|
[14] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[15] |
Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, Wang W, Xiong H, Sobota J A, Hashimoto M and Kirchmann P S 2018 Nat. Phys. 14 451
|
[16] |
Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z, Yang L, Zou J, Wu X, Sanvito S, Xia Z, Li L, Wang Z and Xiu F 2016 Nat. Commun. 7 12516
|
[17] |
Lu J, Zheng G, Zhu X, Ning W, Zhang H, Yang J, Du H, Yang K, Lu H and Zhang Y 2017 Phys. Rev. B 95 125135
|
[18] |
Niu J J, Wang J Y, He Z J, Zhang C L, Li X Q, Cai T C, Ma X M, Jia S, Yu D P and Wu X S 2017 Phys. Rev. B 95 035420
|
[19] |
Qiu G, Du Y, Charnas A, Zhou H, Jin S, Luo Z, Zemlyanov D Y, Xu X, Cheng G J and Ye P D 2016 Nano Lett. 16 7364
|
[20] |
Li C Z, Li J G, Wang L X, Zhang L, Zhang J M, Yu D and Liao Z M 2016 ACS Nano 10 6020
|
[21] |
Wang Y, Wang K, Reuttrobey J, Paglione J and Fuhrer M S 2016 Phys. Rev. B 93 121108
|
[22] |
Zhao L X, Huang X C, Long Y J, Chen D, Liang H, Yang Z H, Xue M Q, Ren Z A, Weng H M, Fang Z, Dai X and Chen G F 2017 Chin. Phys. Lett. 34 037102
|
[23] |
Wu D, Liao J, Yi W, Wang X, Li P, Weng H, Shi Y, Li Y, Luo J and Dai X 2016 Appl. Phys. Lett. 108 042105
|
[24] |
Du X, Tsai S W, Maslov D L and Hebard A F 2005 Phys. Rev. Lett. 94 166601
|
[25] |
Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Yan J Q, Mandrus D G and Cheng J G 2016 Phys. Rev. X 8 021055
|
[26] |
Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
|
[27] |
Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C and Zhou X J 2017 Nat. Commun. 8 15512
|
[28] |
Wu Y, Jo N H, Ochi M, Huang L, Mou D, Bud'Ko S L, Canfield P C, Trivedi N, Arita R and Kaminski A 2015 Phys. Rev. Lett. 115 166602
|
[29] |
Huang S M, Huang C Y, Huang S J, Hsu C, Yu S H, Chou M, Wadekar P V, Chen Y S and Tu L W 2017 J. Appl. Phys. 121 054311
|
[30] |
Thomas C R, Vallon M K, Frith M G, Sezen H, Kushwaha S K, Cava R J, Schwartz J and Bernasek S L 2016 Chem. Mater. 28 35
|
[31] |
Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
|
[32] |
Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
|
[33] |
Ishiwata S, Shiomi Y, Lee J S, Bahramy M S, Suzuki T, Uchida M, Arita R, Taguchi Y and Tokura Y 2013 Nat. Mater. 12 512
|
[34] |
Husmann A, Betts J B, Boebinger G S, Migliori A, Rosenbaum T F and Saboungi M L 2002 Nature 417 421
|
[35] |
Resta R 1977 Phys. Rev. B 16 2717
|
[36] |
Newns D M 1969 J. Chem. Phys. 50 4572
|
[37] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[38] |
Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K and Taniguchi T 2016 Nat. Nanotechnol. 11 593
|
[39] |
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|