Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 014703    DOI: 10.1088/1674-1056/26/1/014703

Three-dimensional turbulent flow over cube-obstacles

Hao Lu(卢浩)1, Wen-Jun Zhao(赵文君)2, Hui-Qiang Zhang(张会强)1, Bing Wang(王兵)1, Xi-Lin Wang(王希麟)1
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. Faculty of Architecture, The University of Hong Kong, Hong Kong, China
Abstract  In order to investigate the influence of surface roughness on turbulent flow and examine the wall-similarity hypothesis of Townsend, three-dimensional numerical study of turbulent channel flow over smooth and cube-rough walls with different roughness height has been carried out by using large eddy simulation (LES) coupled with immersed boundary method (IBM). The effects of surface roughness array on mean and fluctuating velocity profiles, Reynolds shear stress, and typical coherent structures such as quasi-streamwise vortices (QSV) in turbulent channel flow are obtained. The significant influences on turbulent fluctuations and structures are observed in roughness sub-layer (five times of roughness height). However, no dramatic modification of the log-law of the mean flow velocity and turbulence fluctuations can be found by surface cube roughness in the outer layer. Therefore, the results support the wall-similarity hypothesis. Moreover, the von Karman constant decreases with the increase of roughness height in the present simulation results. Besides, the larger size of QSV and more intense ejections are induced by the roughness elements, which is crucial for heat and mass transfer enhancement.
Keywords:  turbulent flow      channel flow      large-eddy simulations      coherent structures  
Received:  03 August 2016      Revised:  26 September 2016      Accepted manuscript online: 
PACS:  47.27.-i (Turbulent flows)  
  47.27.nd (Channel flow)  
  47.27.ep (Large-eddy simulations)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50876053).
Corresponding Authors:  Wen-Jun Zhao     E-mail:

Cite this article: 

Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟) Three-dimensional turbulent flow over cube-obstacles 2017 Chin. Phys. B 26 014703

[1] Zhang X, Pan C, Shen J Q and Wang J J 2015 Sci. China Phys. Mech. 58 064702
[2] Zhang C, Pan C and Wang J J 2011 Exp. Fluids 51 1343
[3] Chen Z, Gao B and Wu Z 2007 Int. J. Numer. Meth. Fl. 53 149
[4] Tyagi M and Acharya S 2005 ASME J. Heat Trans. 127 486
[5] Ji W T, Zhang D C, He Y L and Tao W Q 2012 Int. J. Heat Mass Tran. 55 1375
[6] Townsend A A 1976 The Structure of Turbulent Shear Flow (Cambridge:Cambridge University Press)
[7] Orlandi P and Leonardi S 2006 J. Turbul. 7 1
[8] Orlandi P 2013 Phys. Fluids 25 110813
[9] Flack K A, Schultz M P and Connelly J S 2007 Phys. Fluids 19 095104
[10] Wu Y and Christensen K T 2007 Phys. Fluids 19 085108
[11] Castro I P 2007 J. Fluid Mech. 585 469
[12] Krogstad P A and Antonia R A 1999 Exp. Fluids 27 450
[13] Lee S H and Sung H J 2007 J. Fluid Mech. 584 125
[14] Volino R J, Schultz M P and Flack K A 2009 J. Fluid Mech. 635 75
[15] Frenzen P and Vogel C A 1995 Bound-Lay. Meteorol. 72 371
[16] Frenzen P and Vogel C A 1995 Bound-Lay. Meteorol. 75 315
[17] Oncley S P, Friehe C, Larue J C, Businger J A, Itswheire E C and Chang S S 1996 J. Atmos. Sci. 53 1029
[18] Andreas E L, Claffey K J, Jordan R E, Rairall C W, Guest P S, Persson P O L and Grachev A A 2006 J. Fluid Mech. 559 117
[19] Nagib H M and Chauhan K A 2008 Phys. Fluids 20 101518
[20] Leonardi S, Orlandi P, Smalley R J, Djenidi L and Antonia R A 2003 J. Fluid Mech. 491 229
[21] Leonardi S and Castro I P 2010 J. Fluid Mech. 651 519
[22] Gaudio R, Miglio A and Calomino F 2011 J. Hydraul. Res. 49 239
[23] Gaudio R, Miglio A and Dey S 2010 J. Hydraul. Res. 48 658
[24] Zhang H Q, Lu H, Wang B and Wang X L 2011 Chin. Phys. Lett. 28 084703
[25] Leonardi S, Tessicini F, Orlandi P and Antonia R A 2006 AIAA J. 44 2482
[26] Flores O and Jiménez J 2010 Phys. Fluids 22 071704
[27] Lozano-Duran A and Jiménez J 2014 Phys. Fluids 26 011702
[28] Yang F, Zhang H Q and Wang X L 2008 Chin. Phys. Lett. 25 191
[29] Chorin A J 1968 Math. Comp. 22 745
[30] Peskin C S 1972 J. Comput. Phys. 10 252
[31] Fadlun E A, Verzicco R, Orlandi P and Mohd-Yusof J 2000 J. Comput. Phys. 161 35
[32] Kim J, Moin P and Moser R 1987 J. Fluid Mech. 177 133
[33] Burattini P, Leonardi S and Orlandi P 2008 J. Fluid Mech. 600 403
[1] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[2] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[3] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[4] Particle transport behavior in air channel flow with multi-group Lagrangian tracking
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014702.
[5] Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer
Zheng Xiao-Bo (郑小波), Jiang Nan (姜楠). Chin. Phys. B, 2015, 24(6): 064702.
[6] Imaging of supersonic flow over a double elliptic surface
Zhang Qing-Hu (张庆虎), Yi Shi-He (易仕和), He Lin (何霖), Zhu Yang-Zhu (朱杨柱), Chen Zhi (陈植). Chin. Phys. B, 2013, 22(11): 114703.
[7] Analysing the structure of the optical path length of a supersonic mixing layer by using wavelet methods
Gao Qiong(高穹), Yi Shi-He(易仕和), Jiang Zong-Fu(姜宗福), Zhao Yu-Xin(赵玉新), and Xie Wen-Ke(谢文科) . Chin. Phys. B, 2012, 21(6): 064701.
[8] Vertical rotation effect on turbulence characteristics in an open channel flow
Zou Li-Yong(邹立勇), Bai Jing-Song(柏劲松), Li Bu-Yang(李步阳), Tan Duo-Wang(谭多望), Li Ping(李平), and Liu Cang-Li(刘仓理) . Chin. Phys. B, 2008, 17(3): 1034-1040.
[9] Orientation distribution of fibres in a channel flow of fibre suspension
Lin Jian-Zhong (林建忠), Li Jun (李俊), Zhang Wei-Feng (张卫峰). Chin. Phys. B, 2005, 14(12): 2529-2538.
[10] Bäcklund transformation and variable separation solutions for the generalized Nozhnik-Novikov-Veselov equation
Zhang Jie-Fang (张解放). Chin. Phys. B, 2002, 11(7): 651-655.
No Suggested Reading articles found!