Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 014702    DOI: 10.1088/1674-1056/26/1/014702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Particle transport behavior in air channel flow with multi-group Lagrangian tracking

Hao Lu(卢浩)1, Wen-Jun Zhao(赵文君)2, Hui-Qiang Zhang(张会强)1, Bing Wang(王兵)1, Xi-Lin Wang(王希麟)1
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. Faculty of Architecture, The University of Hong Kong, Hong Kong, China
Abstract  The particle motions of dispersion and transport in air channel flow are investigated using a large eddy simulation (LES) and Lagrangian trajectory method. The mean and fluctuating velocities of the fluids and particles are obtained, and the results are in good agreement with the data in the literature. Particle clustering is observed in the near-wall and low-speed regions. To reveal the evolution process and mechanism of particle dispersion and transport in the turbulent boundary layer, a multi-group Lagrangian tracking is applied when the two-phase flow has become fully developed:the fluid fields are classified into four sub-regions based on the flow characteristics, and particles in the turbulent region are divided accordingly into four groups when the gas-particle flow is fully developed. The spatiotemporal transport of the four groups of particles is then tracked and analyzed. The detailed relationship between particle dispersion and turbulent motion is investigated and discussed.
Keywords:  particle-laden flows      channel flow      large-eddy simulations      coherent structures  
Received:  30 June 2016      Revised:  18 August 2016      Accepted manuscript online: 
PACS:  47.55.Kf (Particle-laden flows)  
  47.27.nd (Channel flow)  
  47.27.ep (Large-eddy simulations)  
  47.27.De (Coherent structures)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11132005) and the National Natural Science Foundation of China (Grant No. 50876053).
Corresponding Authors:  Wen-Jun Zhao     E-mail:  zhaowenjunhku@gmail.com

Cite this article: 

Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟) Particle transport behavior in air channel flow with multi-group Lagrangian tracking 2017 Chin. Phys. B 26 014702

[1] Shao X M, Lin J Z, Wu T and Wu Y L 2002 Can. J. Chem. Eng. 80 293
[2] Chan T L, Lin J Z, Zhou K and Chan C K 2006 J. Aerosol Sci. 37 1545
[3] Jin G D, He G W, Wang L P and Zhang J 2010 Int. J. Multiphase Flow 36 432
[4] Lu H, Wang B, Zhang H Q and Wang X L 2013 Sci. China-Phys. Mech. 56 645
[5] Lu H, Wang B, Zhang H Q, Qin J X and Wang X L 2013 Sci. China-Technol. Sci. 56 2525
[6] Crowe C T, Chung J N and Troutt T R 1988 Prog. Energy Combust. Sci. 14 171
[7] Crowe C T, Gore R A and Troutt T R 1985 Partic. Sci. Technol. J. 3 149
[8] Squires K D and Eaton J K 1990 Phys. Fluids A 2 1191
[9] Squires K D and Eaton J K 1991 Phys. Fluids A 3 1169
[10] Wang L P and Maxey M R 1993 J. Fluid Mech. 256 27
[11] Wang L P and Maxey M R 1993 Appl. Sci. Res. 51 291
[12] Longmire E K and Eaton J K 1992 J. Fluid Mech. 236 217
[13] Crowe C T, Sommerfeld M and Tsuji T 1998 Multiphase Flows with Droplets and Particles (New York:CRC Press)
[14] Crowe C T 2006 Multiphase Flow Handbook (New York:CRC Press)
[15] Balachandar S and Eaton J K 2010 Annu. Rev. Fluid Mech. 42 111
[16] Luo K, Fan J R, Li W C and Cen K F 2009 Fuel 88 1294
[17] Luo K, Gui N, Fan J R and Cen K F 2013 Int. J. Heat Mass Tran. 64 155
[18] Luo K, Fan J R, Jin H H and Cen K F 2004 Powder Technol. 147 49
[19] McLaughlin J B 1989 Phys. Fluids A 1 1211
[20] Brooke J W, Kontomaris K, Hanratty T J and McLaughlin J B 1992 Phys. Fluids A 4 825
[21] Eaton J K and Fessler J R 1994 Int. J. Multiphase Flow 20 169
[22] Kaftori D, Hetsroni G and Banerjee S 1995 Phys. Fluids 7 1095
[23] Kaftori D, Hetsroni G and Banerjee S 1995 Phys. Fluids 7 1107
[24] Tanaka M, Maeda Y and Hagiwara Y 2002 Int. J. Heat Fluid Fl. 23 615
[25] Fessler J R, Kulick J D and Eaton J K 1994 Phys. Fluids A 6 3742
[26] Wang Q and Squires K D 1996 Phys. Fluids 8 1207
[27] Monchaux R, Bourgoin M and Cartellier A 2012 Int. J. Multiphase Flow 40 1
[28] Chorin A J 1968 Math. Comp. 22 745
[29] Kim J, Moin P and Moser R 1987 J. Fluid Mech. 177 133
[30] Maxey M and Riley J 1983 Phys. Fluids 26 883
[31] Wang B 2010 Int. J. Heat Mass Tran. 53 2506
[32] Wang B 2010 Int. J. Heat Mass Tran. 53 2522
[33] Hunt J C, Wray A A and Moin P 1988 Tech. Rep. CTR-S88
[34] Pope S 2000 Turbulent Flows (Cambridge:Cambridge University Press)
[1] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[2] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[3] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[4] Three-dimensional turbulent flow over cube-obstacles
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014703.
[5] Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer
Zheng Xiao-Bo (郑小波), Jiang Nan (姜楠). Chin. Phys. B, 2015, 24(6): 064702.
[6] Imaging of supersonic flow over a double elliptic surface
Zhang Qing-Hu (张庆虎), Yi Shi-He (易仕和), He Lin (何霖), Zhu Yang-Zhu (朱杨柱), Chen Zhi (陈植). Chin. Phys. B, 2013, 22(11): 114703.
[7] Analysing the structure of the optical path length of a supersonic mixing layer by using wavelet methods
Gao Qiong(高穹), Yi Shi-He(易仕和), Jiang Zong-Fu(姜宗福), Zhao Yu-Xin(赵玉新), and Xie Wen-Ke(谢文科) . Chin. Phys. B, 2012, 21(6): 064701.
[8] Vertical rotation effect on turbulence characteristics in an open channel flow
Zou Li-Yong(邹立勇), Bai Jing-Song(柏劲松), Li Bu-Yang(李步阳), Tan Duo-Wang(谭多望), Li Ping(李平), and Liu Cang-Li(刘仓理) . Chin. Phys. B, 2008, 17(3): 1034-1040.
[9] Orientation distribution of fibres in a channel flow of fibre suspension
Lin Jian-Zhong (林建忠), Li Jun (李俊), Zhang Wei-Feng (张卫峰). Chin. Phys. B, 2005, 14(12): 2529-2538.
[10] Bäcklund transformation and variable separation solutions for the generalized Nozhnik-Novikov-Veselov equation
Zhang Jie-Fang (张解放). Chin. Phys. B, 2002, 11(7): 651-655.
No Suggested Reading articles found!