Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084401    DOI: 10.1088/1674-1056/24/8/084401

Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer

Yang Juan-Cheng (阳倦成)a b, Li Feng-Chen (李凤臣)a, Cai Wei-Hua (蔡伟华)a, Zhang Hong-Na (张红娜)a, Yu Bo (宇波)c
a School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
b School of Physics Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
c Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum, Beijing 102249, China
Abstract  Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid (VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid (VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation (DNS) is performed in this study to explore the mechanisms of heat transfer enhancement (HTE) and flow drag reduction (DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows.
Keywords:  viscoelastic-fluid-based nanofluid      direct numerical simulation      thermal dispersion model      turbulent drag reduction      heat transfer enhancement  
Received:  15 December 2014      Revised:  25 January 2015      Accepted manuscript online: 
PACS:  44.35.+c (Heat flow in multiphase systems)  
  47.27.ek (Direct numerical simulations)  
  47.27.nd (Channel flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51276046), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020), the China Postdoctoral Science Foundation (Grant No. 2014M561037), and the President Fund of University of Chinese Academy of Sciences, China (Grant No. Y3510213N00).
Corresponding Authors:  Li Feng-Chen     E-mail:

Cite this article: 

Yang Juan-Cheng (阳倦成), Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Yu Bo (宇波) Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer 2015 Chin. Phys. B 24 084401

[1] Choi S U S, Zhang Z G, Yu W, Lockwood F E and Grulke E A 2001 Appl. Phys. Lett. 79 2252
[2] Eastman J A, Choi S U S, Li S, Yu W and Thompson L J 2001 Appl. Phys. Lett. 78 718
[3] Kleinstreuer C and Feng Y 2011 Nanoscale Research Lett. 6 229
[4] Zhou X F and Gao L 2007 Chin. Phys. 16 2028
[5] Chandrasekar M and Suresh S 2009 Chin. Phys. Lett. 26 124401
[6] Xiao B Q 2013 Chin. Phys. B 22 014402
[7] Ma K and Liu J 2007 Physics 36 295 (in Chinese)
[8] Xuan Y M and Li Q 2003 J. Heat Transfer 125 151
[9] Li Q and Xuan Y M 2002 Sci. China E 45 408
[10] Ding Y, Alias H, Wen D and Williams R A 2006 Int. J. Heat Mass Transfer 49 240
[11] Sajadi A R and Kazemi M H 2011 Int. Commun. Heat Mass Transfer 38 1474
[12] Xuan Y and Li Q 2000 Int. J. Heat Fluid Flow 21 58
[13] Roy G, Nguyen C T and Lajoie P R 2004 Superlattices Microst. 35 497
[14] Vajjha R S, Das D K and Namburu P K 2010 Int. J. Heat Fluid Flow 31 613
[15] Mirmasoumi S and Behzadmehr A 2008 Appl. Therm. Eng. 28 717
[16] Kalteh M, Abbassi A, Saffar-Avval M and Harting J 2011 Int. J. Heat Fluid Flow 32 107
[17] Xuan Y and Roetzel W 2000 Int. J. Heat Mass Transfer 43 3701
[18] Heris S Z, Esfahany M N and Etemad G 2007 Numer. Heat Tr. A-Appl. 52 1043
[19] Özerinça S, Yazicioğlua A G and Kakaç S 2012 Int. J. Therm. Sci. 62 138
[20] Mokmeli A and Saffar-Avval M 2010 Int. J. Therm. Sci. 49 471
[21] Khanafer K, Vafai K and Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639
[22] Yang J C, Li F C, Cai W H, Zhang H N and Yu B 2014 Int. J. Heat Mass Transfer 78 277
[23] Toms B A 1949 Proceedings 1st International Congress on Rheology (Amsterdam: North Holland) p. 135
[24] Bewersdorff H W and Ohlendorf D 1998 Colloid Polym. Sci. 266 941
[25] Luchik T S and Tiederman W G 1998 J. Fluid Mech. 190 241
[26] Zakin J L, Liu B and Bewersdorff H W 1998 Rev. Chem. Eng. 14 253
[27] Li F C, Kawaguchi Y, Yu B, Wei J J and Hishida K 2008 Int. J. Heat Mass Transfer 51 835
[28] Li F C, Wang D Z and Kawaguchi Y 2004 Exp. Fluids 36 131
[29] Li F C, Kawaguchi Y and Hishida K 2004 Phys. Fluids 16 3281
[30] Cai W H, Li F C and Zhang H N 2010 J. Fluid Mech. 665 334
[31] Cai W H, Li F C and Zhang H N 2011 Chin. Phys. B 20 124702
[32] Cai W H, Li F C, Zhang H N, Wang Y and Wang L 2012 Sci. China G: Phys. Mech. & Astron. 55 854
[33] Li F C, Cai W H, Zhang H N and Wang Y 2012 Chin. Phys. B 21 114701
[34] Yu B and Kawaguchi Y 2005 Int. J. Heat Mass Transfer 48 4569
[35] Tsukahara T and Kawaguchi Y 2011 Prog. Comp. Fluid Dyn. 11 216
[36] Pinho F T, Li C F, Younis B A and Sureshkumar R 2008 J. Non-Newton. Fluid Mech. 154 89
[37] Resende P R, Kim K, Younis B A, Sureshkumar R and Pinho F T 2011 J. Non-Newton. Fluid Mech. 166 639
[38] Leighton R, Walker D T, Stephens T and Garwood G 2003 ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, July 6–10, 2003, Honolulu, Hawaii, USA, p. 735
[39] Thais L, Tejada-Martinez A E, Gatski T B and Mompean G 2010 Phys. Fluids 22 013103
[40] Wang L, Cai W H and Li F C 2014 Chin. Phys. B 23 034701
[41] Liu Z H and Liao L 2010 Int. J. Therm. Sci. 49 2331
[42] Liao L and Liu Z H 2009 Heat Mass Transfer 45 1129
[43] Yang J C, Li F C, Zhou W W, Huang Y M and Jiang B C 2012 Int. J. Heat Mass Transfer 55 3160
[44] Yang J C, Li F C, Zhou W W, He Y R, Huang Y M and Jiang B C 2013 Int. J. Heat Mass Transfer 62 303
[45] Yang J C, Li F C, Xu H P, He Y R, Huang Y M and Jiang B C 2015 Exp. Heat Transfer 28 125
[46] Yang J C, Xu H P and Li F C 2014 CIESC J. 65 199 (in Chinese)
[47] Bianco V, Manca O and Nardini S 2011 Int. J. Therm. Sci. 50 341
[48] Namburu P K, Das D K, Tanguturi K M and Vajjha R S 2009 Int. J. Therm. Sci. 48 290
[49] Kondaraju S, Jin E K and Lee J S 2010 Phys. Rev. E 81 016304
[50] Yu B and Kawaguchi Y 2004 J. Non-Newton. Fluid Mech. 116 431
[51] Kawamura H
[52] Kays W, Crawford M, Weigand B and Zhao Z N 2004 Convective Heat and Mass Transfer, 4nd edn. (Beijing: Higher Education Press) pp. 158, 207
[53] Yu B, Wu X, Wei J J, Li F C and Kawaguchi Y 2011 Int. Commun. Heat Mass Transfer 38 160
[54] Virk P S, Merrill E W, Mickley H S, Smith K A and Mollo-Christensen E L 1967 J. Fluid Mech. 30 305
[55] Li F C, Yu B, Wei J J and Kawaguchi Y 2012 Turbulent drag reduction by surfactant additives (Singapore: John Wiley & Sons (Asia) Pet Ltd.) p. 126
[1] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[2] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[3] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[4] A new kind of hairpin-like vortical structure induced by cross-interaction of sinuous streaks in turbulent channel
Jian Li(李健), Gang Dong(董刚), Hui Zhang(张辉), Zhengshou Chen(陈正寿), Zhaode Zhang(张兆德). Chin. Phys. B, 2018, 27(8): 084701.
[5] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[6] Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
Hong-Na Zhang(张红娜), Feng-Chen Li(李凤臣), Xiao-Bin Li(李小斌), Dong-Yang Li(李东阳), Wei-Hua Cai(蔡伟华), Bo Yu(宇波). Chin. Phys. B, 2016, 25(9): 094701.
[7] A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids
Li Feng-Chen (李凤臣), Wang Lu (王璐), Cai Wei-Hua (蔡伟华). Chin. Phys. B, 2015, 24(7): 074701.
[8] Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow
Zhang Hong-Na (张红娜), Li Feng-Chen (李凤臣), Cao Yang (曹阳), Kunugi Tomoaki, Yu Bo (宇波). Chin. Phys. B, 2013, 22(2): 024703.
[9] Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence
Cai Wei-Hua(蔡伟华),Li Feng-Chen(李凤臣), and Zhang Hong-Na(张红娜) . Chin. Phys. B, 2011, 20(12): 124702.
No Suggested Reading articles found!