Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080401    DOI: 10.1088/1674-1056/27/8/080401
GENERAL Prev   Next  

Concept study of measuring gravitational constant using superconducting gravity gradiometer

Xing Bian(边星)1,2, Ho Jung Paik2, Martin Vol Moody3
1 University of Chinese Academy of Sciences, Beijing 100049, China;
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Physics, University of Maryland, College Park, Maryland 20742, USA
Abstract  

Newton's gravitational constant G is the least known fundamental constant of nature. Since Cavendish made the first measurement of G with a torsion balance over two hundred years ago, the best results of G have been obtained by using torsion balances. However, the uncorrected anelasticity of torsion fibers makes the results questionable. We present a new method of G measurement by using a superconducting gravity gradiometer constructed with levitated test masses, which is free from the irregularities of mechanical suspension. The superconducting gravity gradiometer is rotated to generate a centrifugal acceleration that nulls the gravity field of the source mass, forming an artificial planetary system. This experiment has a potential accuracy of G better than 10 ppm.

Keywords:  gravitational constant      superconducting gravity gradiometer      artificial planetary system  
Received:  20 April 2018      Revised:  26 April 2018      Accepted manuscript online: 
PACS:  04.80.-y (Experimental studies of gravity)  
  84.71.Ba (Superconducting magnets; magnetic levitation devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Corresponding Authors:  Xing Bian     E-mail:  ciahpu@gmail.com

Cite this article: 

Xing Bian(边星), Ho Jung Paik, Martin Vol Moody Concept study of measuring gravitational constant using superconducting gravity gradiometer 2018 Chin. Phys. B 27 080401

[1] Kleinevoss U, Meyer H, Schumacher A and Hartmann S 1999 Meas. Sci. Technol. 10 492
[2] Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M and Tino G M 2014 Nature 510 518
[3] Schwarz J P, Robertson D S, Niebauer T M and Faller J E 1998 282 5397
[4] Gundlach J H and Merkowitz S M 2000 Phys. Rev. Lett. 85 2869
[5] Reich E S 2010 Nature 466 1030
[6] Kuroda K 1995 Phys. Rev. Lett. 75 2796
[7] Moody M V, Paik H J and Canavan E R 2002 Rev. Sci. Instrum. 73 3957
[8] Griggs C E, Moody M V, Norton R S, Paik H J and Venkateswara K 2017 Phys. Rev. Appl. 8 064024
[9] Paik H J 2000 talk presented at an invited session “Modern G measurements” at the American Physical Society Meeting, 2000, Long Beach, USA
[10] Smith D E, Christodoulidis D C, Kolenkiewicz R, Dunn P J, Klosko S M, Torrence M H, Fricke S and Blackwell S 1985 J. Geophys. Res.: Solid Earth 90 9221
[11] Lerch F J, Laubscher R E, Klosko S M, Smith D E, Kolenkiewicz R, Putney B H, Marsh J G and Brownd J E 1978 Geophys. Res. Lett. 5 1031
[12] Ries J C, Eanes R J, Huang C, Schutz B E, Shum C K, Tapley B D, Watkins M M and Yuan D N 1989 Geophys. Res. Lett. 16 271
[13] Hexagon Manufacturing Intelligence http://www.hexagonmi.com/products/coordinate-measuring-machines/bridge-cmms/leitz-infinity[2018]
[14] Alzahrani K, Burton D, Lilley F, Gdeisat M, Bezombes F and Qudeisat M 2012 Opt. Express 20 5658
[15] Liu L X, Shao C G, Tu L C and Luo J 2009 Chin. Phys. Lett. 26 010403
[16] Zürn W and Wielandt E 2007 Geophys. J. Int. 168 647
[17] Herron T J, Tolstoy I and Kraft D W 1969 J. Geophys. Res. 74 1321
[18] AcroBeam http://www.acrobeam.com/Html/Product/product1/230.html[2018]
[1] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[2] Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
Xiao-Bing Deng(邓小兵), Xiao-Chun Duan(段小春), De-Kai Mao(毛德凯), Min-Kang Zhou(周敏康), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2017, 26(4): 043702.
[3] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[4] Complex frequencies of a massless scalar field in loop quantum black hole spacetime
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久) . Chin. Phys. B, 2011, 20(3): 030401.
[5] Long-distance quantum teleportation assisted with free-space entanglement distribution
Ren Ji-Gang(任继刚), Yang Bin(杨彬), Yi Zhen-Huan(易震环), Zhou Fei(周飞), Chen Kai(陈凯), Peng Cheng-Zhi(彭承志), and Pan Jian-Wei(潘建伟). Chin. Phys. B, 2009, 18(8): 3605-3610.
No Suggested Reading articles found!