|
|
Ultrafast optical beam deflection in a pump probe configuration |
Lingliang Liang(梁玲亮)1,2,3, Jinshou Tian (田进寿)1, Tao Wang(汪韬)1, Shengli Wu(吴胜利)3, Fuli Li(李福利)3, Junfeng Wang(王俊锋)1, Guilong Gao(高贵龙)1,2,3 |
1. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi'an 710119, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Propagation of a signal beam in an AlGaAs/GaAs waveguide multiple-prism light deflector is theoretically investigated by solving the scalar Helmholtz equation to obtain the dependences of the temporal and spatial resolvable characteristics of the ultrafast deflector on the material dispersion of GaAs including group velocity dispersion and angular dispersion, interface reflection, and interface scattering of multiple-prism deflector. Furthermore, we experimentally confirm that, in this ultrafast beam deflection device, the deflecting angle of the signal light beam is linear with the pump fluence and the temporal resolution of the ultrafast deflection is 10 ps. Our results show that the improvement of the temporal and spatial resolvable performances is possible by properly choosing the structural parameters and enhancing the quality of the device.
|
Received: 26 January 2016
Revised: 11 June 2016
Accepted manuscript online:
|
PACS:
|
06.60.Jn
|
(High-speed techniques)
|
|
07.60.-j
|
(Optical instruments and equipment)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.79.Fm
|
(Reflectors, beam splitters, and deflectors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274377 and 61176006) and the State Major Research Equipment Project, China (Grant No. ZDY2011-2). |
Corresponding Authors:
Lingliang Liang
E-mail: lianglingliang@opt.cn
|
Cite this article:
Lingliang Liang(梁玲亮), Jinshou Tian (田进寿), Tao Wang(汪韬), Shengli Wu(吴胜利), Fuli Li(李福利), Junfeng Wang(王俊锋), Guilong Gao(高贵龙) Ultrafast optical beam deflection in a pump probe configuration 2016 Chin. Phys. B 25 090602
|
[1] |
Gordon E I 1966 Appl. Opt. 5 1629
|
[2] |
Lotspeich J F 1968 IEEE Spectrum 5 45
|
[3] |
Ninomiya Y 1973 IEEE J. Quantum Elect. QE-9 791
|
[4] |
Li Y, Chen D Y, Yang L and Alfano R R 1991 Opt. Lett. 16 438
|
[5] |
Sakamoto T, Toyoda S, Ueno M and Kobayashi J 2014 IEEE CPMT Symposium Japan, November 4-6, 2014, Kyoto, Japan, p. 173
|
[6] |
Sun L, Kim J H, Jang C H, An D C, Lu X J, Zhou Q J, TaboadaJ M, Chen R T, Maki J J, Tang S N, Zhang H, Steier W H, Zhang C and Dalton L R 2001 Opt. Eng. 40 1217
|
[7] |
Wight D R, Heaton J M, Hughes B T, Birbeck J C H and Hilton K P 1991 Appl. Phys. Lett. 59 899
|
[8] |
Feng X, Hu W W and Xu A S 2005 Appl. Opt. 44 5429
|
[9] |
Shintaro H, Kyoji S and Tetsuro K 2005 Appl. Phys. Lett. 87 081101
|
[10] |
Yao L, Dao Y C, Lina Y and Alfano R R 1991 Opt. Lett. 16 438
|
[11] |
Chong S, Hui L, Shining Z and Dentcho A G 2015 Sci. Rep. 5 8835
|
[12] |
Wang D, Wu J Z and Zhang J X 2016 Chin. Phys. B 25 064202
|
[13] |
Finch A, Liu Y, Niu H, Sibbett W, Sleat W E, Walker D R, Yang Q L ang Zhang H 1989 Proc. SPIE 1032 622
|
[14] |
Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y and Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese)
|
[15] |
Friedman W, Jackal S, Seka W and Zimmermann J 1977 Proc. SPIE 97 544
|
[16] |
Elliott R A and Shaw J B 1979 Appl. Opt. 18 1025
|
[17] |
Sarantos C H and Heebner J E 2010 Opt. Lett. 35 1389
|
[18] |
Lee B Y, Kobayashi T, Morimoto A and Sueta T 1992 IEEE J. Quantum Elect. 28 1739
|
[19] |
Faris G W, Brinkman E A and Jeffries J B 2000 Opt. Express 7 447
|
[20] |
Toyoshima M, Fidler F, Pfennigbauer M and Leeb W R 2006 Opt. Express 14 4092
|
[21] |
Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L and Wang X 2014 Acta Phys. Sin. 63 060702 (in Chinese)
|
[22] |
Lin W Z, Fujimoto L G, Ippen E P and Logan R A 1987 Appl. Phys. Lett. 50 124
|
[23] |
Benjamin S D, Loka H S, Othonos A and Smith P W E 1996 Appl. Phys. Lett. 68 2544
|
[24] |
Bennett B R, Soref R A and Alamo J A D 1990 IEEE J. Quantum Elect. 26 113
|
[25] |
Benjamin S D, Othonos A and Smith P W E 1994 Electron. Lett. 30 1704
|
[26] |
Hisatake S and Kobayashi T 2006 Opt. Express 14 12704
|
[27] |
Li D R, Lv X H, Wu P, Luo Q M, Chen R W and Zeng S Q 2006 Acta Phys. Sin. 55 4729 (in Chinese)
|
[28] |
Kadlec F, Nemec H and Kužel P 2004 Phys. Rev. B 70 125205
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|