ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit |
Xueyi Guo(郭学仪)1,2, Hui Deng(邓辉)1, Hekang Li(李贺康)1,2, Pengtao Song(宋鹏涛)1,2, Zhan Wang(王战)1,2, Luhong Su(苏鹭红)1,2, Jie Li(李洁)1, Yirong Jin(金贻荣)1, Dongning Zheng(郑东宁)1,2 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude λz and the frequency ωl of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave.
|
Received: 20 April 2018
Revised: 07 May 2018
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Fund: Project supported by the Ministry of Science and Technology of China (Grant Nos. 2014CB921401, 2017YFA0304300, 2014CB921202, and 2016YFA0300601), the National Natural Science Foundation of China (Grant No. 11674376), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300). |
Corresponding Authors:
Yirong Jin, Dongning Zheng
E-mail: jyr-king@iphy.ac.cn;dzheng@iphy.ac.cn
|
Cite this article:
Xueyi Guo(郭学仪), Hui Deng(邓辉), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Jie Li(李洁), Yirong Jin(金贻荣), Dongning Zheng(郑东宁) Modulation of energy spectrum and control of coherent microwave transmission at single-photon level by longitudinal field in a superconducting quantum circuit 2018 Chin. Phys. B 27 074206
|
[1] |
Devoret M H and Schoelkopf R J 2013 Science 339 1169
|
[2] |
Oliver William D and Welander Paul B 2013 MRS Bulletin 38 816
|
[3] |
Rabi I I, Ramsey N F and Schwinger J 1954 Rev. Mod. Phys. 26 167
|
[4] |
Wu Ying and Xiaoxue Yang 2007 Phys. Rev. Lett. 98 013601
|
[5] |
Lü Z and Zheng H 2012 Phys. Rev. A 86 023831
|
[6] |
Yan Y, Lü Z and Zheng H 2014 Phys. Rev. A 90 053850
|
[7] |
Lü Z, Yan Y, Goan H S and Zheng H 2016 Phys. Rev. A 93 033803
|
[8] |
Yan Y, Lü Z, Zheng H and Zhao Y 2016 Phys. Rev. A 93 033812
|
[9] |
Yan Y, Lü Z, Luo J and Zheng H 2017 Phys. Rev. A 96 033802
|
[10] |
Liu Y X, Yang C X, Sun H C and Wang X B 2014 New J. Phys. 16 015031
|
[11] |
Silveri M, Tuorila J, Kemppainen M and Thuneberg E 2013 Phys. Rev. B 87 134505
|
[12] |
Nakamura Y, Pashkin Y A and Tsai J S 2001 Phys. Rev. Lett. 87 246601
|
[13] |
Wilson C M, Duty T, Persson F, Sandberg M, Johansson G and Delsing P 2007 Phys. Rev. Lett. 98 257003
|
[14] |
Wilson C M, Johansson G, Duty T, Persson F, Sandberg M and Delsing P 2010 Phys. Rev. B 81 024520
|
[15] |
Li J, Silveri M, Kumar K, Pirkkalainen J M, Vepsäläinen A, ChienW, Tuorila J, Sillanpää M, Hakonen P, Thuneberg E and Paraoanu G 2013 Nat. Commun. 4 1420
|
[16] |
Wu Y, Yang L P, Zheng Y, Deng H, Yan Z, Zhao Y, Huang K, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X and Lu L 2016 arXiv:1605.06747[quant-ph]
|
[17] |
Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
|
[18] |
Kelly J S 2015 Fault-tolerant Superconducting Qubits (Ph.D. Dissertation) (Santa Barbara:University of California)
|
[19] |
Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
|
[20] |
Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett. 107 073601
|
[21] |
Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001
|
[22] |
Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
|
[23] |
Astafiev O V, Abdumalikov Jr A A, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 183603
|
[24] |
Abdumalikov A A, Astafiev O V, Pashkin Y A, Nakamura Y and Tsai J S 2011 Phys. Rev. Lett. 107 043604
|
[25] |
Wilson C M, Johansson G, Pourkabirian A, Simoen M, Johansson J R, Duty T, Nori F and Delsing P 2011 Nature 479 376
|
[26] |
Hoi I C, Palomaki T, Lindkvist J, Johansson G, Delsing P and Wilson C M 2012 Phys. Rev. Lett. 108 263601
|
[27] |
Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P andWilson C M 2013 Phys. Rev. Lett. 111 053601
|
[28] |
Hoi I C, Wilson C M, Johansson G, Lindkvist J, Peropadre B, Palomaki T and Delsing P 2013 New J. Phys. 15 025011
|
[29] |
Koshino K, Terai H, Inomata K, Yamamoto T, Qiu W, Wang Z and Nakamura Y 2013 Phys. Rev. Lett. 110 263601
|
[30] |
Koshino K, Inomata K, Yamamoto T and Nakamura Y 2013 Phys. Rev. Lett. 111 153601
|
[31] |
Loo A F V, Fedorov A, Lalumi.ere K, Sanders B C, Blais A and Wallraff A 2013 Science 342 1494
|
[32] |
Inomata K, Koshino K, Lin Z R, Oliver W D, Tsai J S, Nakamura Y and Yamamoto T 2014 Phys. Rev. Lett. 113 063604
|
[33] |
Mlynek J A, Abdumalikov A A, Eichler C and Wallraff A 2014 Nat. Commun. 5 5186
|
[34] |
Hoi I C, Kockum A F, Tornberg L, Pourkabirian A, Johansson G, Delsing P and Wilson C M 2015 Nat. Phys. 11 1045
|
[35] |
Inomata K, Lin Z, Koshino K, Oliver W D, Tsai J S, Yamamoto T and Nakamura Y 2016 Nat. Commun. 7 12303
|
[36] |
Forn-Díaz P, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M and Lupascu A 2017 Nat. Phys. 13 39
|
[37] |
Liu Y and Houck A A 2017 Nat. Phys. 13 48
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|